首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
The influence of the interface exchange coupling on the magnetization reversal process for a FePt/α-Fe/FePt tri-layer structure has been studied through a micromagnetic approach.The analytical formula of the nucleation field has been derived.It is found that the nucleation field increases as the interface coupling constant rises.Especially when the thickness of the soft layer is small,the influence of the exchange coupling on the nucleation field is significant.The angular distributions of the magnetization for various exchange coupling constants have been obtained by numerical calculation.It is found that the angular distribution of the magnetization is discontinuous at the interface of the hard and soft layers.In the meantime,the pinning field decreases with the increase of the thickness of the soft layer and the exchange coupling constant.  相似文献   

2.
The hysteresis loops as well as the spin distributions of Sm–Co/α-Fe bilayers have been investigated by both threedimensional(3D) and one-dimensional(1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses t~s. The exchange coupling coefficient Ahsbetween the hard and soft layers varies from 1.8 × 10~(-6)erg/cm to 0.45 × 10~(-6)erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm–Co/α-Fe multilayers.  相似文献   

3.
The macroscopic magnetic properties such as remanent magnetization of the ferromagnetic multilayer system with random easy axis orientations is investigated by using a effective micromagnet approach. The multilayer, which alternating soft/hard layers in which their easy axis orientations is random build a nanostructured multilayer, is considered to meet periodic boundary condition, the dependence of remanence on thickness has been analytical derived. Author find that the remancence clearly depends on the thickness of the soft magnetic layer nearly independence of thickness of hard magnetic layer. this analytical results are in excellent agreement with previous numerical results.  相似文献   

4.
The equilibrium magnetization configuration, the inducing field and the coercive field in trilayer magnetic materials having an out-of-plane anisotropy defect interlayer between two in-plane anisotropy layers are discussed by both analytical and numerical calculations based on a micromagnet approach. It is shown that the above physical parameters strongly depend on the defect layer such as its thickness and exchange stiffness etc., as well as on the applied fields. It is found that there is a special thickness of defect layer, in which the inducing effect begin to occur, and the critical behavior of inducing field in the vicinity of the special thickness is linearly characterized. Particularly, the magnetic hysteresis shows typical soft hysteresis shape, even though the host material is composed of hard magnets, and the coercivity increases with increasing the thickness of the interlayer.  相似文献   

5.
Microstructures and magnetic properties of Ta/Pt/Co 2 FeAl(CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy(PMA) of half-metallic full-Heusler alloy films.PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope.It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA.The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature.At the intersection points,the decreasing slope of the saturation magnetization(M s) changes because of the conversions.The dependence of M s on the annealing temperature and MgO thickness is also studied.  相似文献   

6.
李晓其  徐晓光  王圣  吴勇  张德林  苗军  姜勇 《中国物理 B》2012,21(10):107307-107307
Microstructures and magnetic properties of Ta/Pt/Co 2 FeAl(CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy(PMA) of half-metallic full-Heusler alloy films.PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope.It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA.The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature.At the intersection points,the decreasing slope of the saturation magnetization(M s) changes because of the conversions.The dependence of M s on the annealing temperature and MgO thickness is also studied.  相似文献   

7.
The uniaxial magnetic anisotropy of obliquely deposited Fe(001)/Pd film on MgO(001) substrate is investigated as a function of deposition angle and film thickness. The values of incidence angle of Fe flux relative to surface normal of the substrate are 0°, 45°, 55°, and 70°, respectively. In-situ low energy electron diffraction is employed to investigate the surface structures of the samples. The Fe film thicknesses are determined to be 50 ML, 45 ML, 32 ML, and 24 ML(1 ML = 0.14 nm) by performing x-ray reflectivity on the grown samples, respectively. The normalized remanent magnetic saturation ratio and coercivity are obtained by the longitudinal surface magneto-optical Kerr effect. Here, the magnetic anisotropy constants are quantitatively determined by fitting the anisotropic magnetoresistance curves under different fields.These measurements show four-fold cubic anisotropy in a large Fe film thickness(50 ML) sample, but highly in-plane uniaxial magnetic anisotropies in thin films(24 ML and 32 ML) samples. In the obliquely deposited Fe films, the coercive fields and the uniaxial magnetic anisotropies(UMAs) increase as the deposition angle becomes more and more tilted. In addition, the UMA decreases with the increase of the Fe film thickness. Our work provides the possibility of manipulating uniaxial magnetic anisotropy, and paves the way to inducing UMA by oblique deposition with smaller film thickness.  相似文献   

8.
Using C programming language, we have simulated the flux creep process in nonideal type-Ⅱ superconductors. Global and local magnetization curves are calculated and the logarithmic time dependence of local magnetic induction B under a constant external field is examined. The effects of nonuniform pinning potential and self-organized criticality (SOC) model on the simulations are discussed. The results show that the main feature of flux creep is the relaxation effect. The form of hysteresis loops is dependent on the magnetic field sweep rate. SOC can account for the occurrence of fluctuation to a certain extent and nonuniform pinning potential can enhance the fluctuation.  相似文献   

9.
Remanence properties and magnetization reversal mechanism of Fe nanowire arrays with diameters 16nm and 130nm are studied. Isothermal remanent magnetization curves show that the contribution of irreversible magnetization decreases when the diameter changes from 16nm to 130hm. The remanence coercivities of these nanowires obtained in dc-demagnetization curve are about 2400 Oe and 800 Oe, respectively. The magnetization reversal mechanism is different in these two samples. For the nanowire array with diameter 16nm, both the nucleation and the pinning have effects on magnetization reversal mechanism, and the pinning field (about 2500 Oe) is larger than the nucleation field (about 2200 Oe). However, for the nanowire array with diameter 130nm, the magnetization reversal mechanism is dominated by the pinning effect of domain walls.  相似文献   

10.
The relation between microscopic properties (e.e.,layer thickness,easy axis orientation) and the macroscopic magnetic properties such as remanent magnetization of the ferromagnetic multilayer system is investigated based on a simple micromagnet approach.We concentrate on a multilayer design with periodic boundary condition,where alternating soft/hard layers build a nanostructured multilayer.For any easy axis direction in the soft and hard layers a simple explicit expression of remanence of the system has been derived analytically.We find that the remanence clearly depends on the thickness of the soft magnetic layer and is nearly independent of the thickness of hard magnetic layer.On the other hand,the remanence increases upon reducing the angle enclosed by the saturation magnetization and the easy axis directions of soft magnetic layer.However,it is unsensitive to the easy axis direction of hard magnetic layer,but there exists a maximum remanence for a certain easy axis direction of hard magnetic layer.  相似文献   

11.
The magnetic properties and magnetization reversible processes of L1_0 FePt(3 nm)/Pb(Mg_(1/3)Nb_(2/3))O_3–PbTiO_3(PMN–PT) heterostructure were investigated by using the phase field model. The simulation results show that the magnetic coercivities and magnetic domains evolution in the L1_0 FePt thin film are significantly influenced by the compressive strains stemming from the polarization of single crystal PMN–PT substrate under an applied electric field. It is found that the magnetic coercivities increase with increasing of the compressive strain. A large compressive strain is beneficial to aligning the magnetic moments along the out-of-plane direction and to the enhancement of perpendicular magnetic anisotropy. The variations of magnetic energy densities show that when compressive strains are different at the magnetization reversible processes, the magnetic anisotropy energies and the magnetic exchange energies firstly increase and then decrease, the negative demagnetization energy peaks appear at coercivities fields, and the magnetoelastic energies are invariable at large external magnetic field with the energy maximum appearing at coercivities fields. The variations of the magnetoelastic energies bring about the perpendicular magnetic anisotropy so that the magnetoelastic energy is lower at the large external magnetic fields, whereas the appearance of magnetoelastic energy peaks is due to the magnetization-altered direction from the normal direction of the plane of the L1_0 FePt thin film at coercivities fields.  相似文献   

12.
The effects of microstructure, cell orientation and temperature on magnetic properties and the coercivity mechanism in Sm(Co,Fe,Cu,Zr)z with low Cu content are studied by using the micromagnetic finite element method in this paper. The simulations of the demagnetization behaviours indicate that the pinning effect weakens gradually with the thickness of cell boundary decreasing and strengthens gradually with the cell size decreasing. Because of the intergrain exchange coupling, the coercivity mechanism is determined by the difference in magnetocrystalline anisotropy between the cell phase and the cell boundary phase. And the coercivity mechanism is related to not only the cells alignment but also temperature. With temperature increasing, a transformation of the demagnetization mechanism occurs from the domain pinning to the uniform magnetization reversal mode and the transformation temperature is about 650~K.  相似文献   

13.
We study the ferrimagnetic properties of spin 1/2 and spin-1 systems by means of the effective field theory. The system is considered in the framework of bond dilution mixed Blume-Capel mode/ (BCM) with random single-ion anisotropy. The investigation of phase diagrams and magnetization curves indicates the existence of induced magnetic ordering and single or multi-compensation points. Special emphasis is placed on the influence of bond dilution and random single-ion anisotropy on normal or induced magnetic ordering states and single or multi-compensation points. Normal magnetic ordering states take on new phase diagrams with increasing randomness (bond and anisotropy), while anisotropy induced magnetic ordering states are always occurrence no matter whether concentration of anisotropy is large or small. Existence and disappearance of compensation points rely strongly on bond dilution and random singleion anisotropy. Some results have not been revealed in previous papers and predicted by Néel theory of ferrimagnetism.  相似文献   

14.
Zero-field-cooled(ZFC) magnetization,field-cooled(FC) magnetization,ac magnetic susceptibility and major hysteresis loops of itinerant ferromagnet SrRuO3 have been measured at magnetic ordering temperatures ranging from 5 to 160K.An empirical model is proposed to calculate the measured ZFC magnetization.The result indicates that the calculated ZFC magnetization compares well with the measured one.Based on the generalized Preisach model.both the ZFC and FC curves are reproduced by numerical simulations.The critical temperature and critical exponents are determined by measuring the ac magnetic susceptibility in different bias magnetic fields at temperatures in the vicinity of the point of phase transition.  相似文献   

15.
The dependences of soft magnetic properties and microstructures of the sputtered FeCo (=FeFeCo薄膜 溅射条件 软磁性 高饱和磁化强度FeCo film, sputtering conditions, high saturation magnetization, soft magnetic properties2005-10-263/7/2006 12:00:00 AMThe dependences of soft magnetic properties and microstructures of the sputtered FeCo (=Fe65Co35) films on Co underlayer thickness tCo, FeCo thickness tFeCo, substrate temperature Ts and taxget-substrate spacing dT-s are studied. FeCo single layer generally shows a high coercivity with no obvious magnetic anisotropy. Excellent soft magnetic properties with saturation magnetization μ0Ms of 2.35 T and hard axis coercivity Hch of 0.25 kA/m in FeCo films can be achieved by introducing a Co underlayer. It is shown that sandwiching a Co underlayer causes a change in orientation and reduction in grain size from 70 nm to about 10 nm in the FeCo layer. The magnetic softness can be explained by the Hoffmann's ripple theory due to the effect of grain size. The magnetic anisotropy can be controlled by changing dT-S, and a maximum of 14.3 kA/m for anisotropic field Hk is obtained with dT-S=18.0 cm.  相似文献   

16.
Nowadays the yttrium iron garnet(Y_3Fe_5O_(12), YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, especially the frequency stability, are seriously affected by the relaxation of the interface magnetic moments. In this study, the effect of out-of-plane magnetization depinning on the resonance frequency shift(? fr) was investigated for 3-μm YIG films grown on Gd_3Ga_5O_(12)(GGG)(111) substrates by liquid-phase epitaxy. It is revealed that the ferromagnetic resonance(FMR) and spin wave propagation exhibit a very slow relaxation with relaxation time τ even longer than one hour under an out-of-plane external magnetic bias field. The ? fr span of 15.15–24.70 MHz is observed in out-of-plane FMR and forward volume spin waves. Moreover, the ? fr and τ depend on the magnetic field. The ? fr can be attributed to that the magnetic moments break away from the pinning layer at the YIG/GGG interface. The thickness of the pinning layer is estimated to be about9.48 nm to 15.46 nm according to the frequency shifting. These results indicate that ? fr caused by the pinning layer should be addressed in the design of microwave and spin wave devices, especially in the transverse magnetic components.  相似文献   

17.
G. Ismail  S. Hassan 《中国物理》2002,11(9):948-954
One-dimensional Ising systems in random fields (RFs) are studied taking into account the nearest-neighbour and next-nearest-neighbour interactions. We investigate two distributions of RFs: binary and Gaussian distributions. We consider four cases of the exchange couplings: ferro-ferromagnetic (F-F), ferro-antiferromagnetic (F-AF), antiferro-ferromagnetic (AF-F) and antiferro-antiferromagnetic (AF-AF). The energy minima of chains of no more than 30 spins with periodic boundary conditions are analysed exactly. We found that the average number of energy minima grows exponentially with the number of spins in both cases of RFs. The energy distributions across the corresponding energy minima are shown. The effects of RFs on both the average and density of metastable states are explained. For a weak RF, the energy distributions display a multipartitioned structure. We also discuss the frustration effect due to RFs and exchange fields. Finally, the distributions of magnetization are calculated. The absolute value of magnetization averaged over all metastable states decreases logarithmically with the number of spins.  相似文献   

18.
The spontaneous magnetization of the Ho^3+ ion in holmium iron garnet (HoIG) single crystals in the temperature range of 4.2-294K along the directions [111], [110], and [100] are calculated, taking into account the effects of six magnetically inequivalent sites occupied by the Ho^3+ ions based on the quantum theory. The calculated results show that the magnetization of the Ho^3+ ion in HoIG is obviously anisotropic. The theoretical results ave in agreement with those of experiments. A primary interpretation of the anisotropy of magnetization of the Ho^3+ ion in HoIG is put forward.  相似文献   

19.
The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current,respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect.  相似文献   

20.
贾立颖  阴津华  马星桥 《中国物理 B》2014,23(2):27501-027501
Research on exchange-spring magnets has focused on the microstructures of the materials.However,research has seldom been concerned with the effect of magnetic properties of soft magnetic phase on the energy product of an exchangespring magnet.In this paper,a simple one-dimensional numerical simulation is used to investigate this effect in a Nd2Fe14Bbased exchange-spring magnet.The results reveal that the larger the anisotropy constant,the stronger the exchange coupling,and the higher the magnetization of the soft magnetic4 phase,the larger the energy product of an exchange-spring magnet.This provides evidence for choosing a soft magnetic phase in an exchange-spring magnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号