首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 85 毫秒
1.
非脉动流低溶血叶轮血泵   总被引:1,自引:4,他引:1  
采用对数螺旋线叶片和抛物线轮盘,精心设计制作叶轮式离心血泵,并用电机直接驱动叶轮,由磁性流体密封转轴,使泵的溶血指标降低为0.015,重量减小到240克,效率提高至60%。在与国产临床用转子泵和美国商品化的名牌转子泵Sarns 7000的溶血比较中,自制叶轮泵的溶血仅为国产转子泵的1/5和Sarns 7000转子泵的1/3.5。山羊和狗的左心室辅助试验中,叶轮泵在动物血浆增加的游离血色素,低于隔膜泵在小牛身上所作的同样试验中所测得的相应值。结果表明,非脉动流叶轮血泵适合于长期辅助自由走动实验动物或病人的血液循环。  相似文献   

2.
自制离心型人工心脏电动叶轮血泵在18头小公牛身上行左心室辅助存活试验,其中有三头实验牛分别存活62、54、46d,试验期动物血液参数和器官功能无明显变化,证明该装置的血液相容性已经达到设计要求,动物死亡或实验终结,均由血泵内轴承磨损引起。因此,研制磁力轴承替代机械轴承,以避免机械磨损,是实现离心型人工心脏电动叶轮血泵突破性进展的关键。  相似文献   

3.
离心泵的研制及体外循环的初步应用探讨   总被引:1,自引:0,他引:1  
离心泵已被用于辅助循环及体外循环。本文报告自行设计的离心泵并初步应用于体外循环。本离心泵分泵头及驱动装置两个部分,二者之间是以磁性体相互吸附连接带动,血液由泵头中央进入离心室,随叶片的高速旋转而产生离心力将血液推出泵周出口。泵头是根据国内材料及加工工艺设计,叶轮采用6个叶片和2个碟片胶合而成,转速为0~3 600r/min,出口压力为0~79.98kPa(0~600mmHg),最大流量为81/min,预充量为34ml,泵接头直径为9.5mm(3/8吋)。 离体血细胞破坏试验是摸拟体外循环条件,流量在21/min以上时离心泵比滚柱泵对血细胞破坏明显减少。动物实验结果离心泵转流180分钟后游离血红蛋白平均上升6.04%(土6.06%),滚柱泵转流相同时间则上升为32.24%(士32.25%),证明离心泵比滚柱泵对血细胞破坏明显减少。临床初步应用,对10例15~20kg体重患儿进行体外循环下室缺修补术,流量为1.8~2.5l/min,泵出压为17.3~20kPa(130~150mmHg),灌注压为3.07~4.67kPa(23~35mmHg),转流时间为30~50分钟,转速为2 000~2 500r/min,结果均自动复跳,无血色素尿;术后4小时拔除气管插管,无其它并发症,说明本离心泵具备用于体外循环的条件。  相似文献   

4.
总红细胞破损在滚柱泵体外转流实验中存在的研究   总被引:1,自引:1,他引:0  
观察滚柱泵在长时间转注中是否存在“总红细胞破损”现象,用Polystan泵和Cobe泵转流dACD血400ml,用联苯胺显示法测定游离血红蛋白,用Koller我法计算溶血指数,血样本为转流前,转中4、6、8、10、12、14、16h。结果:两了血红蛋白随流时间延长,逐渐增高,两组溶血指数分别为0.2960mg/L和0.3993mg/L,两组比较无显著差异。在滚柱泵单体外转流实验中未观察到“总红细胞  相似文献   

5.
目的:为了改善电磁轴承结构复杂、体积偏大,液力轴承承载力小、不能在较大负载下工作的弊端,提出一种流道型磁液悬浮轴流血泵,提高血泵承载能力。方法:流道型轴流血泵轴向采用永磁力进行支承,径向采用转子叶轮的流道结构产生的液力悬浮;利用Ansys对轴向瞬态磁场进行仿真,对磁力变化进行研究,利用Fluent对不同开槽方向、角度、深度的径向液力进行仿真,对液力变化进行研究。结果:根据轴向磁力随位移的变化,得出磁力最大为2.9 N,楔形开槽结构倾斜角为28°,开槽数为5,槽深0.36 mm,叶顶间隙为0.40 mm,性能达到最优,能满足人体使用。结论:流道型轴流血泵相对于普通磁液悬浮血泵有更高的承载力,较好的悬浮性能,为轴流血泵的优化研究提供了新的思路。  相似文献   

6.
国内外研究人员为克服溶血问题做了大量的工作,对血泵溶血性能作出了评价标准,通过利用实验和仿真手段对可能造成溶血的因素,如血泵结构、叶轮参数、血泵材料、血泵流场分布等做了很多的研究,分析了这些因素与血泵溶血的关联性,从而为在一定程度上解决血泵的溶血问题找到了方法.我们对目前血泵溶血的研究进行了综述.  相似文献   

7.
血泵溶血的研究进展   总被引:2,自引:0,他引:2  
国内外研究人员为克服溶血问题做了大量的工作,对血泵溶血性能作出了评价标准,通过利用实验和仿真手段对可能造成溶血的因素,如血泵结构、叶轮参数、血泵材料、血泵流场分布等做了很多的研究,分析了这些因素与血泵溶血的关联性,从而为在一定程度上解决血泵的溶血问题找到了方法。我们对目前血泵溶血的研究进行了综述。  相似文献   

8.
轴流式血泵的研究进展   总被引:1,自引:0,他引:1  
轴流式血泵作为一种左心室辅助装置,对于心脏病患者尤其是等待移植的重症患者,具有重要的意义.本文介绍了目前世界上最流行的8种轴流式血泵的设计参数、实验结果以及临床应用现状,并对其发展前景进行了展望.  相似文献   

9.
自制离心型人工心脏电动叶轮血泵在18头小化牛身上行左心室辅助存活试验,其中有三头实验牛分别存活62、54、46d,试验期动物血液参数和器明显变化,证明该装置的血液相容性已经达到设计要求,动物死亡或实验终结,均由血泵内轴承磨损引起。因此,研制磁力轴承替代机械轴承,以避免机械磨损,是实现离心型人工心脏电动叶轮血泵突破性进展的关键。  相似文献   

10.
人工心脏(血泵)应兼具优良的水力学性能和血液相容性,血泵性能的提升依赖于良好的优化设计方法。本文对近年离心式血泵优化设计相关的工作进行总结,首先回顾数值模拟方法的进展,高保真度的流场数值模拟是进行血泵优化设计的先决条件;接着主要从叶轮、蜗壳、间隙等方面概括优化设计的参数敏感性研究;总结优化设计常用的几种方法,包括参数敏感性研究、正交优化、机器学习/遗传算法、拓扑优化;最后提出血泵优化设计的展望及存在的挑战。研究结果可为未来的血泵优化设计工作提供有益的借鉴和参考。  相似文献   

11.
A new pulsatile pump is described, and the results of bench tests and animal experiments are presented. The arterial blood pressure and flow waveforms generated by the pump resemble those produced by the canine heart. The present pump is satisfactory for dog perfusions, and should, with minor modifications, be suitable for use in human surgery.  相似文献   

12.
目的为了得到更适合血液循环的动力装置,提出一种用于体外膜肺氧合(extracorporeal membrane oxygenation,ECMO)系统由电磁铁驱动的搏动式血泵,并研究其可行性。方法首先利用电磁原理设计出电磁驱动机构,主要部件包括对称的两个电磁铁和压簧,两个电磁铁交替通电下使得动铁芯往复运动;利用容积控制原理,泵腔在动铁芯的驱动下收缩舒张;然后根据上述原理设计出血泵模型,包括电磁驱动部件和泵腔;最后建立包括血泵、电路控制部分、示波器、加速度传感器、输入输出管路和储液池的试验台,对血泵模型进行驱动力和流量输出测试。结果血泵模型在通电电压7~12 V时动铁芯的初始驱动力为2. 97~8. 00 N。血泵模型产生的初始驱动力与工作电压呈正相关非线性关系,当通入电压12 V时血泵模型初始驱动力满足要求。当前压与后压为0、频率80次/min、工作电压7~12 V时的流量输出为0. 97~3. 81 L/min。当前压与后压为0,工作电压12 V、频率60~90次/min时的流量输出为3. 1~3. 8 L/min。当工作电压12 V、频率80次/min、前压0~40 cm H2O和后压50~110 cm H2O时的流量输出为0. 55~3. 59 L/min。血泵流量与工作电压和频率呈正相关,与后压呈负相关,与前压无显著性相关。结论往复式电磁铁驱动搏动式血泵基本满足ECMO临床要求,具有广泛的应用前景,对体外循环血泵的发展具有重要意义,但仍需进一步研究和改进。  相似文献   

13.
14.
15.
目的提出一种磁耦合驱动搏动式血泵结构并验证其可行性。方法基于磁场传递往复作用力模型以及推拉互挽式结构设计磁耦合驱动搏动血泵,通过建立磁力驱动模型,计算耦合力大小,制作样机并对样机进行体外循环模拟试验,获得压力和流量实验数据。结果采用生理盐水作为循环介质,固定后负荷,增加前负荷,血泵输出量减少,没有明显线性趋势;固定前负荷,增加后负荷,血泵输出量减少,且具有一定线性趋势。设置驱动频率为75次/min时,调节前、后负荷改变范围分别为0.665~3.990 k Pa(5~30 mm Hg)和5.320~11.970 k Pa(5~30 mm Hg),可使输出量在保证线性关系条件下达到2.0~3.1 L/min。结论该搏动式血泵流体力学特性基本满足体外膜肺循环的需要,仍需进一步研究和改进;研究结果具有重要的应用前景,尤其对替代目前临床体外膜肺氧合设备的血泵装置具有重要意义。  相似文献   

16.
17.
目的探讨无叶片离心泵结构和体外循环关键参数之间的关系,为无叶片离心泵的优化设计提供理论依据和实践参考。方法采用计算流体动力学(computational fluid dynamics,CFD)方法对无叶片离心泵进行数值模拟,分析离心泵的结构和转速与血液流量、泵内流动状态、预充量之间的关系。结果叶轮与蜗壳之间距离一定时,两层叶轮结构比一层叶轮结构驱动血液能力强,但是预充量大;进出口导管直径小,有利于调节流量;泵体结构和叶轮转速影响泵内的血液速度分布,从而会对血液造成不同程度的破坏。结论无叶片离心泵结构和叶轮转速对体外循环流量的控制、泵内血液速度分布、预充量有很大影响。  相似文献   

18.
Thrombus formation and hemolysis have been linked to the dynamics of blood flow in rotary blood pumps and ventricular assist devices. Hemolysis occurs as the blood passes through the pump housing, and thrombi develop in stagnation and low-velocity regions. The predicted velocities, pressure, and turbulence quantities from the numerical simulation are used to identify regions of high shear stress and internal recirculation. A nimerical technique is described that simulates the hydrodynamic characteristics of a rotary blood pump with a flow rate of 6 l/min at a rotational speed of 3000 RPM. A computational fluid dynamics (CFD) code, CFX 4, is used to solve the time-dependent incompressible Navier-Stokes equations using a transient finite volume method and three-dimensional structured grids. The simulation utilized the sliding mesh capabilities of this numerical code to model the rotating impeller and examine the effect of blade shape on the hydrodynamic performance of the blood pump in terms of pressure rise, flow rates, and energy losses. The first impeller model has six straight channels; the second impeller has six backward-curved channels. The results for two impeller configurations are presented and discussed. The curvedpump design resulted in higher pressure rise and maximum shear stresses than the straight-channel one. In general the paper demonstrates that CFD is an essential numerical tool for optimizing pump performance with the aim of reducing trauma to the blood cells.  相似文献   

19.
【摘 要】 目的:为解决第三代血泵中磁力和液力悬浮系统体积偏大、发热多、水力性能差、血损严重等问题,提出一种磁液双悬浮支承系统。 方法:磁液双悬浮支承系统轴向靠磁力、径向靠径向液力共同实现转子的稳定悬浮;分别利用ANSYS电磁模块和楔形动压承载原理对轴向磁力、径向液力进行分析,利用Fluent对磁液双悬轴流血泵的水力性能进行仿真分析。 结果:对悬浮系统轴向、径向承载力的分析以及悬浮实验结果表明该系统可以实现稳定的悬浮;Fluent仿真及水力实验表明当血泵转子转速为9 500 r/min以上时,能满足人体需要。 结论:磁液双悬浮支承系统具有较好的悬浮性、水力性能,可作为第三代血泵进一步改进的选择方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号