首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
Kuiper带天体的轨道分布特性   总被引:3,自引:1,他引:2  
聂清香 《天文学报》2002,43(4):375-378
1992年9月,夏威夷大学的D.Jewitt和加利福尼亚大学的J.Lun发现了海王星外绕太阳运行的第一个小天体1992QB1[1],开创了人类对于海王星外天体的实际观测的研究.近10年的接连不断发现,已经证实了海王星轨道外面存在着一个由大量的环绕太阳运动的小天体组成的环带[2].由于G.P.Kuiper曾在1951年的文章中提出过在冥王星的外边可能存在小天体的问题,因此人们一般把这个环带称为Kuiper带,你这些天体为“KuiperBelt Objects”(KBOs),或从逻辑上称它们为“Trans-NeptunianObjects”(TNOs)[3]  相似文献   

2.
Kuiper带是指太阳系内位于离太阳30-50AU一个区域。1992年该区域陆续发现了一群半径在几十到几百公里的小天体。这些小天体在Kuiper带的分布是极其不均匀的。Kuiper带小天体的发现对人们认识太阳系的形成与演化有重要的意义。本文回顾了近年来国际上在Kuiper带小天体动力演化方面的研究,着重分析了目前国际上几种用以解释其非均匀分布的动力学机制,并提出目前该领域的一些尚未解决的问题。  相似文献   

3.
Kuiper带天体的原始分布模拟   总被引:1,自引:0,他引:1  
用包括太阳、8颗大行星、冥王星和UB313以及无质量实验粒子在内的N体问题的天体动力学模型,取当前观测的天体轨道根数为初始条件,对具有确定轨道根数的551个Kuiper主带内的小天体进行了10亿年的轨道反演数值模拟.结果显示:当前观测的这些Kuiper 天体中的1/3以上在10亿年前就位于该区域,少部分位于海王星轨道之内,其他在5OAU之外;在4.5亿年前,整个Kuiper主带内的天体呈较好的正态分布,海王星3:2共振带内没有像今天这样的天体聚集现象.  相似文献   

4.
易照华 《天文学报》2001,42(2):113-120
以当前太阳系动力学中的重要课题以及研究方法进行讨论,并提出一些看法,课题中主要讨论动力学模型,轨道共振,行星环,混沌和长期演化,近地天体运动,Kupiper带,太阳系中的引力理论,以及其他有关问题。  相似文献   

5.
Kuiper带是指太阳系内位于离太阳 30~ 50AU一个区域。 1 992年该区域陆续发现了一群半径在几十到几百公里的小天体。这些小天体在Kuiper带的分布是极其不均匀的。Kuiper带小天体的发现对人们认识太阳系的形成与演化有重要的意义。本文回顾了近年来国际上在Kuiper带小天体动力演化方面的研究 ,着重分析了目前国际上几种用以解释其非均匀分布的动力学机制 ,并提出目前该领域的一些尚未解决的问题。  相似文献   

6.
黎健  周礼勇  孙义燧 《天文学报》2008,49(2):179-191
太阳星云气体的耗散可以引起长期共振迁移(secular resonance sweeping,SRS),当长期共振的位置扫过经典Kuiper带小天体(Kuiper Belt objects,KBOs),就会激发其轨道倾角.详细研究了在太阳系紧致构形中(指四个大行星轨道彼此相距较小的状态)SRS对经典KBOs轨道倾角的激发过程,发现KBOs轨道倾角受激发的程度敏感地依赖于星云气体中面与太阳系不变平面1的夹角δ:当星云气体中面与不变平面重合,即δ=0时,经典KBOs倾角受到的激发很小;而当星云气体中面与黄道面重合,即δ≈1.6°时,在合理的初始条件下,经典KBOs的倾角最高可以被激发到30°以上.另外,通过模拟木星具有较大轨道倾角的情形以及SRS和大行星轨道迁移同时发生的情形,发现对于经典KBOs倾角的受激发程度而言,它们两者的影响都远弱于δ.  相似文献   

7.
8.
李嘉 《天文学进展》2011,29(1):105-116
采用接近真实太阳系的动力学模型,对主带小行星的动力学演化进行了数值模拟。计算的起始时间是儒略日JD=2.4540005×10~6,计算的时间长度为100万年。力学模型采用n+m体模型,计算程序基于小行星轨道演化的软件Orbit9。对演化结果进行分析可以发现测试粒子与木星的平运动共振对测试粒子稳定性的不同作用,以及在2:3、3:4共振处不同初始ω值对测试粒子演化结果的影响。  相似文献   

9.
偏心率是描述天体运动轨道的重要参数之一, 能够为揭示天体的动力学演化提供重要线索, 进而帮助理解天体形成与演化的过程及背后的物理机制. 随着天文观测技术的不断发展, 人们对于天体运动轨道的研究已经走出太阳系, 包含的系统也从大质量端的恒星系统延伸到了低质量端的行星系统. 聚焦天体轨道偏心率研究, 回顾了目前在恒星系统(包括主序恒星、褐矮星以及致密星)和行星系统(包括太阳系外巨行星以及``超级地球''、``亚海王星''等小质量系外行星)方面取得的进展, 总结了不同尺度结构下偏心率研究的一些共同之处和待解决的问题. 并结合当下和未来的相关天文观测设备和项目, 对未来天体轨道偏心率方面的研究工作进行了展望.  相似文献   

10.
11.
Our goal is to understand primary accretion of the first planetesimals. Some examples are seen today in the asteroid belt, providing the parent bodies for the primitive meteorites. The primitive meteorite record suggests that sizeable planetesimals formed over a period longer than a million years, each of which being composed entirely of an unusual, but homogeneous, mixture of millimeter-size particles. We sketch a scenario that might help explain how this occurred, in which primary accretion of 10-100 km size planetesimals proceeds directly, if sporadically, from aerodynamically-sorted millimeter-size particles (generically “chondrules”). These planetesimal sizes are in general agreement with the currently observed asteroid mass peak near 100 km diameter, which has been identified as a “fossil” property of the pre-erosion, pre-depletion population. We extend our primary accretion theory to make predictions for outer Solar System planetesimals, which may also have a preferred size in the 100 km diameter range. We estimate formation rates of planetesimals and explore parameter space to assess the conditions needed to match estimates of both asteroid and Kuiper Belt Object (KBO) formation rates. For parameters that satisfy observed mass accretion rates of Myr-old protoplanetary nebulae, the scenario is roughly consistent with not only the “fossil” sizes of the asteroids, and their estimated production rates, but also with the observed spread in formation ages of chondrules in a given chondrite, and with a tolerably small radial diffusive mixing during this time between formation and accretion. As previously noted, the model naturally helps explain the peculiar size distribution of chondrules within such objects. The optimum range of parameters, however, represents a higher gas density and fractional abundance of solids, and a smaller difference between Keplerian and pressure-supported orbital velocities, than “canonical” models of the solar nebula. We discuss several potential explanations for these differences. The scenario also produces 10-100 km diameter primary KBOs, and also requires an enhanced abundance of solids to match the mass production rate estimates for KBOs (and presumably the planetesimal precursors of the ice giants themselves). We discuss the advantages and plausibility of the scenario, outstanding issues, and future directions of research.  相似文献   

12.
Rodney S Gomes 《Icarus》2003,161(2):404-418
I simulate the orbital evolution of the four major planets and a massive primordial planetesimal disk composed of 104 objects, which perturb the planets but not themselves. As Neptune migrates by energy and angular momentum exchange with the planetesimals, a large number of primordial Neptune-scattered objects are formed. These objects may experience secular, Kozai, and mean motion resonances that induce temporary decrease of their eccentricities. Because planets are migrating, some planetesimals can escape those resonances while in a low-eccentricity incursion, thus avoiding the return path to Neptune close encounter dynamics. In the end, this mechanism produces stable orbits with high inclination and moderate eccentricities. The population so formed together with the objects coming from the classical resonance sweeping process, originates a bimodal distribution for the Kuiper Belt orbits. The inclinations obtained by the simulations can attain values above 30° and their distribution resembles a debiased distribution for the high-inclination population coming from the real classical Kuiper Belt.  相似文献   

13.
14.
Abstract The Kuiper Belt is a disk of small icy objects orbiting the Sun beyond Neptune. The region between 40-48AU in this disk is supposed to consist of dynamical “cold” objects on low-inclination orbits and is called the “Classical Kuiper Belt”. Recent observations reveal that there is a “hot” population with inclinations being as large as 30? residing in this region. Secular resonance sweeping, which took place in the late stage of formation of the planetary system when the residual nebula gas was dispersing, is a possible mechanism that can excite the orbits in this region. In this paper, we investigate in detail the excitation of orbital inclination by this mechanism. It is shown that the excitation depends sensitively on the angle δ between the midplane of the nebula gas and the invariable plane of the solar system. The excitation is very small when δ = 0?, but if the gas midplane coincides with the ecliptic, i.e. if δ ≈ 1.6?, then objects in the region of classical Kuiper belt can be excited to orbital inclinations as high as 30?, provided the nebula gas has the proper initial density and disperses at a proper rate. We also considered the orbital excitation by secular resonance sweeping with Jupiter on an inclined orbit and with migrating Jovian planets, and found the excitation is only slightly affected.  相似文献   

15.
We present new visible-infrared (V−J) observations of 17 Kuiper Belt objects, of which 14 were observed in the visible and infrared wavebands simultaneously to limit the effects of lightcurve variations. Combining these data with our previously published visible-infrared data provides a dataset of 29 objects, 25 of which offer simultaneous V−J colors. We examine the resulting dataset for evidence of relationships between physical properties and orbital characteristics. We find no evidence of a color-size relationship (as previously suspected), at least over the size range sampled. The dataset supports the trend, reported elsewhere, that there is a predominance of red material on the surfaces of objects having perihelia beyond 40 AU. Our data are also supportive, albeit weakly, of a reported correlation between inclination and color in the classical Kuiper Belt — although it is perhaps more correct to say that our data show that there appears to be a lack of low inclination blue objects. Our V−J colors appear broadly correlated with published optical colors, thus suggesting that the surfaces of Kuiper Belt objects are subject to a single reddening agent.  相似文献   

16.
The dynamical structure of the orbital element space of seven Kuiper Belt binary systems is studied by numerical methods in the model of the spatial elliptic restricted three‐body problem. It is shown that three systems have an extended region of stability where additional satellites could exist. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The orbital migration of Jovian planets is believed to have played an important role in shaping the Kuiper Belt. We investigate the effects of the long time-scale (2×107 yr) migration of Jovian planets on the orbital evolution of massless test particles that are initially located beyond 28 AU. Because of the slowness of the migration, Neptune's mean motion resonances capture test particles very efficiently. Taking into account the stochastic behavior during the planetary migration and for proper parameter values, the resulting concentration of objects in the 3:2 resonance is prominent, while very few objects enter the 2:1 resonance, thus matching the observed Kuiper Belt objects very well. We also find that such a long time-scale migration is favorable for exciting the inclinations of the test particles, because it makes the secular resonance possible to operate during the migration. Our analyses show that the v8 secular resonance excites the eccentricities of some test particles, so decreasing their perihelion distances, leading to close encounters with Neptune, which can then pump the inclinations up to 20℃.  相似文献   

18.
The dynamics of the Kuiper Belt region between 33 and 63 au is investigated just taking into account the gravitational influence of Neptune. Indeed the aim is to analyse the information which can be drawn from the actual exoplanetary systems, where typically physical and orbital data of just one or two planets are available. Under this perspective we start our investigation using the simplest three-body model (with Sun and Neptune as primaries), adding at a later stage the eccentricity of Neptune and the inclinations of the orbital planes to evaluate their effects on the Kuiper Belt dynamics. Afterwards we remove the assumption that the orbit of Neptune is Keplerian by adding the effect of Uranus through the Lagrange–Laplace solution or through a suitable resonant normal form. Finally, different values of the mass ratios of the primary to the host star are considered in order to perform a preliminary analysis of the behaviour of exoplanetary systems. In all cases, the stability is investigated by means of classical tools borrowed from dynamical system theory, like Poincaré mappings and Lyapunov exponents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号