首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemorrhagic proteinase, HTb, isolated from Crotalus atrox (western diamondback rattlesnake) venom was studied for its specificity. HTb showed fibrinogenase activity, hydrolyzing the A alpha chain of fibrinogen first, followed by the cleavage of the B beta chain. HTb is different from thrombin and did not produce a fibrin clot. The degradation products of fibrinogen were found to be different, indicating that the cleavage sites in the A alpha and B beta chains are different from those of thrombin. N-Benzoyl-Phe-Val-Arg-p-nitroanilide was not hydrolyzed by HTb, although this substrate was hydrolyzed by thrombin and reptilase.  相似文献   

2.
In our effort to identify the proteolytic specificity of various hemorrhagic toxins isolated from western diamondback rattlesnake venom, hemorrhagic toxin b was isolated in homogeneous form by previously published methods. Hemorrhagic toxin b hydrolyzed glucagon, producing six fragments. The proteolytic sites were identified as Thr(5)-Phe(6), Thr(10)-Ser(11), Asp(15)-Ser(16), Asp(21)-Phe(22) and Try(25)-Leu(26). When oxidized insulin B chain was used, proteolysis occurred at four sites: Asn(3)-Gln(4), His(10)-Leu(11), Tyr(16)-Leu(17) and Gly(23)-Phe(24). The proteolytic specificity of hemorrhagic toxin b is quite different from those of the nonvenom proteases such as thermomycolin, aspergillopeptidase c, alkaline protease from Aspergillus flavus, elastase, subtilisin and papain.  相似文献   

3.
Although many studies have documented variation in the amount of venom expended during bites of venomous snakes, the mechanistic source of this variation remains uncertain. This study used experimental techniques to examine how two different features of the venom delivery system, the muscle surrounding the venom gland (the Compressor Glandulae in the rattlesnake) and the fang sheath, could influence venom flow in the western diamondback rattlesnake, Crotalus atrox. Differential contraction of the Compressor Glandulae explained only approximately 30% of the variation in venom flow. Lifting (compression) of the fang sheath as occurs during a normal strike produced marked increases in venom flow; these changes were closely correlated and exceed in magnitude by almost 10 x those recorded from the Compressor Glandulae alone. These results suggest that variation in these two aspects of the venom delivery system--both in terms of magnitude and temporal patterning--explain most of the observed variation in venom injection. The lack of functional or mechanical links between the Compressor Glandulae and the fang sheath, and the lack of skeletal or smooth muscle within the fang sheath, make it unlikely that variation in venom flow is under direct neural control. Instead, differential venom injection results from differences in the pressurization by the Compressor Glandulae, the gate keeping effects of the fang sheath and enclosed soft-tissue chambers, and by differences in the pressure returned by peripheral resistance of the target tissue.  相似文献   

4.
Hemorrhagic toxin f (HT-f) was isolated from Crotalus atrox (Western Diamondback Rattlesnake) venom by a five-step purification procedure. Homogeneity was established by the formation of a single band in acrylamide gel electrophoresis, isoelectric focusing, and sodium dodecyl sulfate (SDS)-electrophoresis. HT-f has a molecular weight of 64,000 and contains 572 amino acid residues. It contains 1 mol of zinc per mol of protein. Zinc is essential for both hemorrhagic and proteolytic activities. HT-f possesses proteolytic activity hydrolyzing the Val-Asn, Gln-His, Leu-Cys, His-Leu, Ala-Leu, and Tyr-Leu bonds of oxidized insulin B chain. HT-f did not coagulate fibrinogen to fibrin, yet it did hydrolyze the gamma chain of fibrinogen without affecting either the A alpha or B beta chains. This is the first time that a hemorrhagic toxin was shown to have fibrinogenase activity. HT-f was shown to differ immunologically from other hemorrhagic toxins such as HT-a and HT-c. HT-f also possesses lethal toxicity. When zinc was removed the apo-HT-f lost its lethal toxicity. HT-f produced not only local hemorrhage in the skin and muscle, but also produced systemic hemorrhage in internal organs such as the intestine, kidney, lung, heart, and liver.  相似文献   

5.
A method for obtaining Crotalus atrox alpha-proteinase (EC 3.4.24.1) in a pure form has been developed. Fractionation of the crude venom on DEAE-Sepharose, followed by gel filtration on Bio-Gel P-150 and chromatography on CM-Sepharose, yielded an alpha-proteinase preparation which showed a single band on disc and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had an activity on casein approximately twice that previously reported. The enzyme is a nonglycosylated single-chain polypeptide with a molecular weight of 26,738 and a pI of 8.15. Proteolytic activity on casein, alpha 1-antichymotrypsin, and Cl-inhibitor was abolished by treatment of alpha-proteinase with 1 mM EDTA, but full activity was retained in the presence of 1 mM phenylmethylsulfonyl fluoride. Caseinolytic activity was increased by 33 and 55% in the presence of 10 mM Mg2+ and Ca2+, respectively. Pure alpha-proteinase is devoid of esterolytic activity on H-D-Pro-Phe-Arg-p-nitroanilide (S-2302), benzoyl-L-arginine ethyl ester, and benzoyl-L-tyrosine ethyl ester. The final preparation has no hemorrhagic factor activity.  相似文献   

6.
Two hemorrhagic proteinases from Crotalus atrox venom, hemorrhagic toxin c (Ht-c) and hemorrhagic toxin d (Ht-d), were characterized and compared to one another. The two toxins are zinc metalloproteinases which both have molecular weights of 24,000. Their isoelectric points are slightly acidic, Ht-c being the more basic of the two with an isoelectric point of 6.2, whereas Ht-d has an isoelectric point of 6.1. Only minor differences were found in the amino acid compositions of the two toxins. The toxins were both demonstrated to be hemorrhagic, using an in vivo assay, and also proteolytic. Prior treatment of the hemorrhagic proteinases with ethylenediaminetetraacetic acid and o-phenanthroline eliminated both the hemorrhagic and the proteolytic activities. Aprotinin and phenylmethylsulfonyl fluoride had no effect upon these activities. The pH optimum of the proteolysis by Ht-c and Ht-d on hide powder azure as the substrate was between pH 8 and pH 9. The circular dichroism spectra for Ht-c and Ht-d appear almost identical with respect to minima positions and elipticities, indicative of very similar solution structures for the two enzymes. Antiserum raised in mice against Ht-c was assayed on double-diffusion Ouchterlony plates for cross-reactivity with other hemorrhagic toxins from C. atrox venom. From this experiment it was concluded that the two hemorrhagic proteinases Ht-c and Ht-d share identical antigenic structures. This was corroborated by tryptic mapping of the two toxins. Only one major difference was observed from the maps. In the case of Ht-c, it was determined that an aspartate was substituted by an alanine when compared to Ht-d. From these characterization studies we conclude that Ht-c and Ht-d are isoenzymes with only very minor differences in their structures.  相似文献   

7.
8.
Rattlesnakes detect their prey's temperature by means of a cavern-like structure, the pit organ. The sensory component of this organ lies within a thin membrane called the pit membrane. Proteome analysis conducted on this neurosensory tissue revealed only a relatively small number of proteins, thereby depicting its high degree of specialization. In addition to containing blood serum and structural proteins, the proteome of this membrane appears to be strikingly similar to that of isolated rattlesnake brain mitochondria. Indeed, our results show that over 80% of the detected tissue proteins are of mitochondrial origin. Fluorescence microscopy studies of these organelles indicate their dense arrangement and accumulation in structures which have been previously reported to be the terminal ends of free nerve fibers of the innervating trigeminal branches. Thus, original ultrastructural observations are paralleled by our findings at the molecular level.  相似文献   

9.
10.
Venom toxins were isolated from rattlesnake (Crotalus atrox) venom by cation-exchange chromatography. Seven major fractions could be obtained by single-step ion-exchange chromatography with two fractions showing essentially apparent homogeneity by SDS-gel electrophoresis. All fractions showed various extents of specific proteolytic activity against alpha- or beta-chains of fibrinogen molecules. Further characterization of one of the purified fractions with alpha-fribrinogenase activity indicated that it is a single-chain thrombin-like protease with a molecular mass of about 30 kDa. It is relatively heat stable, inhibited by phenylmethanesulfonyl fluoride, N alpha-p-tosyl-L-phenylalanine chloromethyl ketone and N alpha-p-tosyl-L-lysine chloromethyl ketone but not by soybean trypsin inhibitor and beta-mercaptoethanol. Amino acid analysis showed that the enzyme possesses an amino acid composition very similar to thrombin and crotalase characterized before from the closely related snake venoms. N-Terminal sequence analysis of the enzyme corroborated the close similarity between this enzyme and those sequences of crotalase and kallikrein-like enzymes characterized from the same Crotalidae snake family. This study is in contrast to the previous reports which indicated a lack of thrombin- and crotalase-like enzyme in the venom of Western diamondback rattlesnake.  相似文献   

11.
Variation in metabolism affects energy budgets of individuals and may serve as a mechanism that influences variation at whole organism or population levels. For example, sex differences in metabolic expenditure may contribute to bioenergetic sources of sexual size dimorphism. We measured oxygen consumption rates of 48 western diamondback rattlesnakes (Crotalus atrox) from a sexually dimorphic population and tested the effects of body mass, body temperature and time of day, in three groups of snakes: males, non-reproductive females, and vitellogenic females. Metabolic rates of male and non-reproductive female C. atrox were similar to rates reported for other rattlesnakes (mass exponents ranging from 0.645–0.670). Oxygen consumption was affected by body mass, body temperature and time of day, and was approximately 1.4 times greater in vitellogenic females than in non-reproductive females. No differences were found between males and non-reproductive females. Accordingly, differences in metabolic rate apparently do not contribute directly to sexual dimorphism in this population. Nevertheless, estimates of size-dependent maintenance expenditure lead us to hypothesize that adult female body size may represent a compromise between selection for increased litter size (accomplished by increasing body size), and selection for increased reproductive frequency (accomplished by decreasing body size, and, therefore inactive maintenance expenditure); this is a mechanistic scenario suggested previously for some endotherms. Accepted: 20 May 1998  相似文献   

12.
A fibrinogenolytic enzyme was isolated from the venom of Western Diamondback rattlesnake (Crotalus atrox) by a three-step procedure involving gel filtration and anion-exchange chromatography. The molecular weight was estimated as 22 900 by SDS-polyacrylamide gel electrophoresis. The isoelectric point was found to be pH 4.65. The enzyme rapidly destroyed the ability of bovine fibrinogen to form a clot on incubation with thrombin. Incubation of fibrinogen with the fibrinogenolytic enzyme for 5 min resulted in the disappearance of the beta-chain of fibrinogen and the appearance of lower molecular weight fragments. Thus the enzyme can be classified as a beta-fibrinogenase. However, on prolonged incubation of the fibrinogen there was also a partial digestion of the alpha-chain. The fibrinogenase showed no activity towards fibrin or casein or arginine esters. The fibrinogenolytic activity was inhibited by phenylmethanesulphonyl fluoride (PMSF) but was unaffected by EDTA.  相似文献   

13.
The western diamondback rattlesnake (Crotalus atrox) is a prominent member of North American desert and semi-arid ecosystems, and its importance extends from its impact on the region's ecology and imagery, to its medical relevance as a large deadly venomous snake. We used mtDNA sequences to identify population genetic structure and historical demographic patterns across the range of this species, and relate these to broader patterns of historical biogeography of desert and semi-arid regions of the southwestern USA and adjacent Mexico. We inferred a Late Pliocene divergence between peninsular and continental lineages of Crotalus, followed by an Early Mid Pleistocene divergence across the continental divide within C. atrox. Within desert regions (Sonoran and Chihuahuan Deserts, Southern Plains, and Tamaulipan Plain) we observed population structure indicating isolation of populations in multiple Pleistocene refugia on either side of the continental divide, which we attempt to identify. Evidence of post-glacial population growth and range expansion was inferred, particularly in populations east of the continental divide. We observed clear evidence of (probably recent) gene flow across the continental divide and secondary contact of haplotype lineages. This recent gene flow appears to be particularly strong in the West-to-East direction. Our results also suggest that Crotalus tortugensis (Tortuga Island rattlesnake) and a population of 'C. atrox' inhabiting Santa Cruz Island (in the Gulf of California) previously suggested to be an unnamed species, are in fact deeply phylogenetically nested within continental lineages of C. atrox. Accordingly, we suggest C. tortugensis and 'C. atrox' from Santa Cruz Island be placed in the synonymy of C. atrox.  相似文献   

14.
Although the toxic properties of snake venoms have been recognized throughout history, very little is known about the adaptive significance of these powerful mixtures. This study examined the popular hypothesis that prey envenomation enhances digestion by influencing the energetic costs of digestion and assimilation, gut passage time, and apparent assimilation efficiency (ASSIM) in western diamondback rattlesnakes (Crotalus atrox), a species whose venom is recognized for its comparatively high proteolytic activities. A complete randomized block design allowed repeated measures of specific dynamic action and gut passage time to be measured in eight snakes ingesting four feeding treatments (i.e., artificially envenomated live mice, artificially envenomated prekilled mice, saline injected live mice, and saline injected prekilled mice). A second experiment measured ASSIM in eight snakes ingesting a series of six artificially envenomated or six saline injected mice meals over an 8-week period. Contrary to expectations, the results of both these experiments revealed that envenomation had no significant influence on any of the measured digestive performance variables. Gut passage time averaged 6 days and ASSIM averaged 79.1%. Twenty-one hours following ingestion, postprandial metabolic rates exhibited factorial increases that averaged 3.9-fold greater than resting metabolic rate. Specific dynamic action lasted on average 88 hr and accounted for 26% of the total ingested energy. The results of this study reinforce the need to systematically examine the potential adaptive advantages that venoms confer on the snakes that produce them.  相似文献   

15.
16.
1. A kallikrein-like enzyme was isolated and characterized from the venom of Crotalus ruber ruber (red rattlesnake). 2. The kallikrein-like enzyme was shown to be homogeneous as demonstrated by a single band on acrylamide gel electrophoresis, isoelectric focusing, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunodiffusion and reverse-phase (RP) HPLC. 3. The enzyme has a molecular weight of 31,000 and isoelectric point of 4.6. It consists of 271 total amino acid residues, 24% of which are acidic amino acids. 4. Specific esterolytic activities of the kallikrein-like enzyme on N-tosyl-L-arginine methylester (TAME) and N-benzoyl-L-arginine ethylester (BAEE) are 109.5 and 23.6 mumol/min/mg, respectively. 5. The enzyme differs from trypsin as the soybean trypsin inhibitor does not inhibit the enzyme's action. Diisopropylfluorophosphate (DFP) inhibits the enzyme, suggesting that the serine hydroxyl group is important for enzyme activity. 6. The enzyme is not lethal at 15 micrograms/g in mice and has no hemorrhagic activity, yet the injection of the purified enzyme intradermally, produced capillary permeability-increasing activity as shown by the use of Evans blue dye, and immediate drop in blood pressure. It also contracted the rat uterus.  相似文献   

17.
18.
J B Bjarnason  A T Tu 《Biochemistry》1978,17(16):3395-3404
Five previously unknown hemorrhagic proteins, designated hemorrhagic toxins a,b,c,d, and e, were isolated from the venom of the western diamondback rattlesnake (Crotalus atrox). Molecular weights of hemorrhagic toxins a-e were determined to be 68 000, 24 000, 24 000, 24 000, and 25 700, respectively, by sodium dodecyl sulfate-phosphate gel electrophoresis using various polyacrylamide gel concentrations. Amino acid composition showed a total of 636, 200, 213, 214, and 219 amino acids for hemorrhagic toxins a-e, respectively. All the hemorrhagic toxins were found to lose their hemorrhagic activities with the metal chelators ethylenediaminetetraacetic acid and 1, 10-phenanthroline. All the hemorrhagic toxins were found to contain approximately 1 mol of zinc/mol of toxin, and they were all demonstrated to be proteolytic when dimethylcasein and dimethylhemoglobin were used as substrates. When zinc was removed from hemorrhagic toxin e with 1,10-phenanthroline, both both the proteolytic and hemorrhagic activities were equally inhibited. When the apohemorrhagic toxin e thus produced was incubated with zinc, the hemorrhagic and proteolytic activities were regenerated to the same extent. CD, UV, and Raman spectroscopy were used to study the structure of native hemorrhagin toxin e as well as the structural changes caused by zinc removal. From CD spectroscopy the native toxin was estimated to consist of 23% alpha helix, 6% beta structure, and 71% random-coil conformation. When over 90% of the zinc was removed, the alpha-helix content dropped from 23 to 7%.  相似文献   

19.
A metalloprotease from the rattlesnake Crotalus atrox venom was isolated and purified from multiple-step chromatographies including anion-exchange chromatography, gel permeation and reversed-phase HPLC. The fraction was shown to be homogeneous as judged by SDS-gel electrophoresis. It also showed a high proteolytic activity against alpha- and beta-chains of fibrinogen molecules. Further characterization of the purified fraction with fibrinogenase activity indicated that it is a single-chain protease with a molecular mass of about 24 kDa and an acidic isoelectric point. It is relatively heat stable up to about 65 degrees C, inhibited by EDTA, beta-mercaptoethanol, but not by phenylmethanesulfonyl fluoride, N alpha-p-tosyl-L-phenylalanine chloromethyl ketone and N alpha-p-tosyl-L-lysine chloromethyl ketone, soybean trypsin inhibitor and aprotinin. Amino acid analysis showed that the enzyme possesses an amino acid composition very similar to some metalloproteases characterized before from the closely related rattlesnake venoms. N-Terminal sequence analysis of the enzyme corroborated some similarity between this enzyme and the reported sequences of these enzymes characterized from the Crotalidae snake family. This study indicated the presence of a novel fibrinogenase (termed Catroxase) with N-terminal sequence different from the metalloprotease with hemorrhagic activity isolated from the same Western diamondback rattlesnake.  相似文献   

20.
The proteolytic specificities of two zinc hemorrhagic toxins (Ht-c and Ht-d), isolated from Crotalus atrox venom, were investigated by using the oxidized B chain of bovine insulin and synthetic peptide substrates. The enzymes cleaved the Ala14-Leu15 bond of the insulin B chain most rapidly and the Tyr16-Leu17 slightly more slowly. The His5-Leu6, His10-Leu11, and Gly23-Phe24 bonds were also cleaved but at considerably slower rates. In order to assess the substrate length preferences of the enzymes, peptide analogs of the B chain about the Ala14-Leu15 bond were synthesized ranging in length from four to seven residues. The heptapeptide NH2-Leu-Val-Glu-Ala-Leu-Tyr-Leu-COOH was the best peptide substrate tested with the other peptides having decreasing kcat/Km values with decreasing length. The tetrapeptide NH2-Ala-Leu-Tyr-Leu-COOH was not cleaved by the enzymes. Furthermore, this peptide was shown to serve as a competitive inhibitor of the toxins. The N-acetylated pentapeptides and hexapeptides, synthesized to probe the active site environment of the enzymes, were significantly better substrates than their unacetylated counterparts. The toxins had the highest kcat/Km values for the acetylated peptide Ac-Val-Ala-Leu-Leu-Ala-COOH. The data suggest that the toxins may indeed have extended substrate-binding sites, which may accommodate at least six amino acid residues. The best substrate examined thus far for the toxins is the fluorogenic peptide analog 2-aminobenzoyl-Ala-Gly-Leu-Ala-4-nitrobenzylamide, suggestive of similarities between the toxins and mammalian collagenases as well as thermolysin. Mechanisms for inhibition of the enzymes were investigated using amino acid hydroxamates, chloromethyl esters, phosphoramidon and the peptide NH2-Ala-Leu-Tyr-Leu-COOH. All of these inhibitors had Ki values in the 10(-4) M range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号