首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lung transplantation is the last option for the treatment of end stage chronic lung disorders. Because the shortage of donor lung organs represents the main hurdle, lung regeneration has been considered to overcome this hurdle. Recellularization of decellularized organ scaffold is a promising option for organ regeneration. Although detergents are ordinarily used for decellularization, other approaches are possible. Here we used high alkaline (pH12) sodium hydroxide (NaOH)-PBS solution without detergents for lung decellularization and compared the efficacy on DNA elimination and ECM preservation with detergent based decellularization solutions CHAPS and SDS. Immunohistochemical image analysis showed that cell components were removed by NaOH solution as well as other detergents. A Collagen and GAG assay showed that the collagen reduction of the NaOH group was comparable to that of the CHAPS and SDS groups. However, DNA reduction was more significant in the NaOH group than in other groups (p < 0.0001). The recellularization of HUVEC revealed cell attachment was not inferior to that of the SDS group. Ex vivo functional analysis showed 100% oxygen ventilation increased oxygen partial pressure as artificial hemoglobin vesicle-PBS solution passed through regenerated lungs in the SDS or NaOH group. It was concluded that the NaOH-PBS based decellularization solution was comparable to ordinal decellularizaton solutions and competitive in cost effectiveness and residues in the decellularized scaffold negligible, thus providing another potential option to detergent for future clinical usage.  相似文献   

3.
《Cytotherapy》2019,21(8):856-869
BackgroundAcute or chronic injury of articular cartilage leads to localized destruction. Difficulties with interface integration between the implant and native cartilage tissue can lead to an undesirable outcome. To improve cartilage repair and interface integration, we explored the therapeutic efficacy of microporous acellular extracellular matrix (ECM) combined with adipose-derived stem cell (ASC) sheets.MethodsMethods for fabricating ASC sheets and microporous acellular ECM were explored before transplanting the constructed ASC sheet/matrix in vivo and in vitro, respectively. After the operation, distal femur samples were collected at 6 and 12 weeks for further analysis.ResultsThe decellularization process removed 90% of the DNA but retained 82.4% of glycosaminoglycans (GAGs) and 82.8% of collagen, which are the primary components of cartilage matrix. The acellular matrix/ASC sheet construct treatment in vivo showed better interface integration, cartilage regeneration, and collagenous fiber arrangement, which resembles the native structure. There was a significant increase in GAG and collagen accumulation at the zone of regeneration and integration compared to other groups. Gene expression analysis showed that the mRNA level associated with cartilage formation significantly increased in the acellular matrix/ASC sheet group (p<0.05), which is consistent with the histological analysis.DiscussionASC sheets promote interface integration between the implant and native tissue. This effect, together with the acellular matrix as a graft, is beneficial for cartilage defect repair, which suggests that acellular matrix/ASC sheet bioengineered cartilage implants may be a better approach for cartilage repair due to their enhanced integration.  相似文献   

4.
Extracellular matrix (ECM) hydrogels are used as scaffolds to facilitate the repair and reconstruction of tissues. This study aimed to optimize the decellularization process of porcine skeletal muscle ECM and to formulate a matrix hydrogel scaffold. Five multi‐step methods (methods A–E) were used to generate acellular ECM from porcine skeletal muscle [rinsing in SDS, trypsin, ethylenediaminetetraacetic acid (EDTA), Triton X‐100 and/or sodium deoxycholate at 4–37°C]. The resulting ECM was evaluated using haematoxylin and eosin, 4‐6‐diamidino‐2‐phenylindole (DAPI) staining, and DNA quantification. Acellular matrix was dissolved in pepsin and gelled at 37°C. Hydrogel response to temperature was observed in vivo and in vitro. ECM components were assessed by Masson, Sirius red, and alcian blue staining, and total protein content. Acellular porcine skeletal muscle exhibited a uniform translucent white appearance. No intact nuclear residue was detected by haematoxylin and eosin staining, while DAPI staining showed a few nuclei in the matrixes produced by methods B, C, and D. Method A generated a gel that was too thin for gelation. However, the matrix obtained by rinsing in 0.2% trypsin/0.1% EDTA, 0.5% Triton X‐100, and 1% Triton X‐100/0.2% sodium deoxycholate was nuclei‐free and produced a viscous solution that formed a structurally stable white jelly‐like hydrogel. The residual DNA content of this solution was 49.37 ± 0.72 ng/mg, significantly less than in fresh skeletal muscle, and decreased to 19.22 ± 0.85 ng/mg after gelation (P < 0.05). The acellular matrix was rich in collagen and glycosaminoglycan, with a total protein concentration of 64.8 ± 6.9%. An acellular ECM hydrogel from porcine skeletal muscle was efficiently produced.  相似文献   

5.
Decellularization and recellularization of parenchymal organs may enable the generation of functional organs in vitro, and several protocols for rodent liver decellularization have already been published. We aimed to improve the decellularization process by construction of a proprietary perfusion device enabling selective perfusion via the portal vein and/or the hepatic artery. Furthermore, we sought to perform perfusion under oscillating surrounding pressure conditions to improve the homogeneity of decellularization. The homogeneity of perfusion decellularization has been an underestimated factor to date. During decellularization, areas within the organ that are poorly perfused may still contain cells, whereas the extracellular matrix (ECM) in well-perfused areas may already be affected by alkaline detergents. Oscillating pressure changes can mimic the intraabdominal pressure changes that occur during respiration to optimize microperfusion inside the liver. In the study presented here, decellularized rat liver matrices were analyzed by histological staining, DNA content analysis and corrosion casting. Perfusion via the hepatic artery showed more homogenous results than portal venous perfusion did. The application of oscillating pressure conditions improved the effectiveness of perfusion decellularization. Livers perfused via the hepatic artery and under oscillating pressure conditions showed the best results. The presented techniques for liver harvesting, cannulation and perfusion using our proprietary device enable sophisticated perfusion set-ups to improve decellularization and recellularization experiments in rat livers.  相似文献   

6.
The multidisciplinary research of tissue engineering utilizes biodegradable or decellularized scaffolds with autologous cell seeding. Objective of this study was to investigate the impact of different decellularization protocols on extracellular matrix integrity of xenogeneic tissue by means of multiphoton femtosecond laser scanning microscopy, biochemical and histological analysis. Pulmonary valves were dissected from porcine hearts and placed in a solution of trypsin-EDTA and incubated at 37 degrees C for either 5, 8, or 24 h, followed by a 24 h PBS washing. Native and decellularized valves were processed for histology, DNA, cell proliferation, matrix proteins and biomechanical testing. Multiphoton NIR laser microscopy has been applied for high-resolution 3D imaging of collagen and elastin. Distinct differences in several ECM components following decellularization time were observed. Total GAG contents decreased in a time-dependent manner, with o-sulfated GAGs being more susceptible to degradation than n-sulfated GAGs. Efficiency of insoluble collagen extraction increased proportionally with decellularization time, suggesting ECM-integrity may be compromised with prolonged incubation. Biomechanical testing revealed a gradual weakening of mechanical strength with increased decellularization time. The enzymatic decellularization process of heart valves revealed a time-dependent loss of cells, ECM components and biomechanical strength. In order to avoid any immune response a thorough decellularization of 24 h remains mandatory.  相似文献   

7.
Breast cancer, with unsatisfactory survival rates, is the leading cause of cancer-related death in women worldwide. Recent advances in the genetic basis of breast cancer have benefitted the development of gene-based medicines and therapies. Tissue engineering technologies, including tissue decellularizations and reconstructions, are potential therapeutic alternatives for cancer research and tissue regeneration. In our study, human breast cancer biopsies were decellularized by a detergent technique, with sodium lauryl ether sulfate (SLES) solution, for the first time. And the decellularization process was optimized to maximally maintain tissue microarchitectures and extracellular matrix (ECM) components with minimal DNA compounds preserved. Histology analysis and DNA quantification results confirmed the decellularization effect with maximal genetic compounds removal. Quantification, immunofluorescence, and histology analyses demonstrated better preservation of ECM components in 0.5% SLES-treated scaffolds. Scaffolds seeded with MCF-7 cells demonstrated the process of cell recellularization in vitro, with increased cell migration, proliferation, and epithelial-to-mesenchymal transition (EMT) process. When treated with 5-fluorouracil, the expressions of stem cell markers, including Oct4, Sox2, and CD49F, were maximally maintained in the recellularized scaffold with decreased apoptosis rates compared with monolayer cells. These results showed that the decellularized breast scaffold model with SLES treatments would help to simulate the pathogenesis of breast cancer in vitro. And we hope that this model could further accelerate the development of effective therapies for breast cancer and benefit drug screenings.  相似文献   

8.
Organ decellularization is emerging as a promising regenerative medicine approach as it is able to provide an acellular, three-dimensional biological scaffold material that can be seeded with living cells for organ reengineering. However this application is currently limited to donor-derived decellularized organs for reengineering in vitro and no study has been conducted for re-engineering the decellularized organ in vivo. We developed a novel technique of a single liver lobe decellularization in vivo in live animals. Using a surgical method to generate a by-pass circulation through the portal vein and infra-hepatic vena cava with a perfusion chamber system, we decellularized the single liver lobe and recellularized it with allogenic primary hepatocytes. Our results showed that the decellularization process in vivo can preserve the vascular structural network and functional characteristics of the native liver lobe. It allows for efficient recellularization of the decellularized liver lobe matrix with allogenic primary hepatocytes. Upon the re-establishment of blood circulation, the recellularized liver lobe is able to gain the function and the allogenic hepatocytes are able to secret albumin. Our findings provide a proof of principle for the in vivo reengineering of liver.  相似文献   

9.
Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies.  相似文献   

10.
The extracellular matrix (ECM) is an essential feature of development, tissue homeostasis and recovery from injury. How the ECM responds dynamically to cellular and soluble components to support the faithful repair of damaged tissues in some animals but leads to the formation of acellular fibrotic scar tissue in others has important clinical implications. Studies in highly regenerative organisms such as the zebrafish and the salamander have revealed a specialist formulation of ECM components that support repair and regeneration, while avoiding scar tissue formation. By comparing a range of different contexts that feature scar-less healing and full regeneration vs. scarring through fibrotic repair, regenerative therapies that incorporate ECM components could be significantly enhanced to improve both regenerative potential and functional outcomes. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.  相似文献   

11.
Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three‐dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041–2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

12.
Bladder replacement or augmentation is required in congenital malformations or following trauma or cancer. The current surgical solution involves enterocystoplasty but is associated with high complication rates. Strategies for bladder tissue engineering are thus actively sought to address this unmet clinical need. Because of the poor efficacy of synthetic polymers, the use of bladder acellular matrix (BAM) has been proposed. Indeed when cellular components are removed from xenogenic or allogeneic bladders, the extracellular matrix scaffold thus obtained can be used alone or in combination with stem cells. In this study, we propose the use of BAM seeded with marrow-derived mesenchymal stem cells (MSCs) for bladder tissue engineering. We optimized a protocol for decellularization of bladder tissue from different species including rat, rabbit and swine. We demonstrate the use of non-ionic detergents followed by nuclease digestion results in efficient decellularization while preserving the extracellular matrix. When MSCs were seeded on acellular matrix scaffold, they remained viable and proliferative while adopting a cellular phenotype consistent with their microenvironment. Upon transplantation in rats after partial cystectomy, MSC-seeded BAM proved superior to unseeded BAM with animals recovering nearly 100% normal bladder capacity for up to six months. Histological analyses also demonstrated increased muscle regeneration.  相似文献   

13.
Homologous tissues, such as adipose tissue, may be an interesting source of acellular scaffolds, maintaining a complex physiological three-dimensional (3D) structure, to be recellularized with autologous cells. The aim of the present work is to evaluate the possibility of obtaining homologous acellular scaffolds from decellularization of the omentum, which is known to have a complex vascular network. Adult rat and human omenta were treated with an adapted decellularization protocol involving mechanical rupture (freeze-thaw cycles), enzymatic digestion (trypsin, lipase, deoxyribonuclease, ribonuclease) and lipid extraction (2-propanol). Histological staining confirmed the effectiveness of decellularization, resulting in cell-free scaffolds with no residual cells in the matrix. The complex 3D networks of collagen (azan-Mallory), elastic fibers (Van Gieson), reticular fibers and glycosaminoglycans (PAS) were maintained, whereas Oil Red and Sudan stains showed the loss of lipids in the decellularized tissue. The vascular structures in the tissue were still visible, with preservation of collagen and elastic wall components and loss of endothelial (anti-CD31 and -CD34 immunohistochemistry) and smooth muscle (anti-alpha smooth muscle actin) cells. Fat-rich and well vascularized omental tissue may be decellularized to obtain complex 3D scaffolds preserving tissue architecture potentially suitable for recellularization. Further analyses are necessary to verify the possibility of recolonization of the scaffold by adipose-derived stem cells in vitro and then in vivo after re implantation, as already known for homologus implants in regenerative processes.Key words: omentum, scaffold, decellularization, adipose tissue engineering, regenerative medicine, microvascularization  相似文献   

14.
力学环境对软骨基质代谢的影响   总被引:5,自引:0,他引:5  
正常关节软骨所受压力是由动态压力与静态压力交替完成。压力引起软骨一系列生理变化包括细胞及细胞外基质成分变形、组织内液体流动、水流电位和生理生化变化。这些变化直接调控细胞外基质代谢。体外构建有良好功能的组织工程化软骨是目前软骨病变、缺损理想的修复方法。研究力学环境对软骨基质代谢的影响,对构建组织工程化软骨有深远意义。  相似文献   

15.
We have developed a microarray-based system for cell adhesion profiling of large panels of cell-adhesive proteins to increase the throughput of in vitro cell adhesion assays, which are currently primarily performed in multiwell plates. Miniaturizing cell adhesion assays to an array format required the development of protocols for the reproducible microspotting of extracellular matrix (ECM) protein solutions and for the handling of cell suspensions during the assay. We generated ECM protein microarrays with high reproducibility in microspot protein content using nitrocellulose-coated glass microslides, combined with piezoelectric microspotting of protein solutions. Protocols were developed that allowed us to use 5000 cells or fewer on an array of 4 x 4 mm consisting of 64 microspots. Using this microarray system, we identified differences of adhesive properties of three cell lines to 14 different ECM proteins. Furthermore, the sensitivity and accuracy of the assays were increased using microarrays with ranges of ECM protein amounts. This microarray system will be particularly useful for extensive comparative cell adhesion profiling studies when only low amounts of adhesive substrate and cells, such as stem cells or cells from biopsies, are available.  相似文献   

16.
The regulation of stem cell differentiation is key for muscle tissue engineering and regenerative medicine. To this end, various substrates mimicking the native extracellular matrix (ECM) have been developed with consideration of the mechanical, topological, and biochemical properties. However, mimicking the biochemical properties of the native ECM is difficult due to its compositional complexity. To develop substrates that mimic the native ECM and its biochemical properties, decellularization is typically used. Here, substrates mimicking the native ECM at each myogenic stage are prepared as stepwise myogenesis-mimicking matrices via the in vitro myogenic culture of C2C12 myoblasts and decellularization. Cells adhered to the stepwise myogenesis-mimicking matrices at similar levels. However, the matrices derived from cells at the myogenic early stage suppressed cell growth and promoted myogenesis. This promotion of myogenesis was potentially due to the suppression of the activation of endogenous BMP signaling following the suppression of the expression of the myogenic-inhibitory factors, Id2 and Id3. Our stepwise myogenesis-mimicking matrices will be suitable ECM models for basic biological research and myogenesis of stem cells. Further, these matrices will provide insights that improve the efficacy of decellularized ECM for muscle repair.  相似文献   

17.
The thermal stability of an isometric plant virus, Turnip Yellow Mosaic Virus (TYMV), has been investigated at low and high hydrostatic pressure, using small angle neutron scattering. Contrast variation allowed us to separately observe the structural changes of the protein capsid and the RNA core. The experiments were performed in 0.05M Tris buffer at pD = 8.0 and in 0.05M bis-Tris buffer at pD = 6.0 containing different H2O/D2O mixtures (40% and 70% D2O). It was found that hydrostatic pressure enhances the stability of TYMV. The thermally induced uncoating of RNA as well as structural transitions of the protein capsid are shifted to higher temperature upon increasing the pressure from 5 × 106 Pa to 2 × 108 Pa.  相似文献   

18.
The effect of decellularization on the biomechanical properties of macaque lungs was studied. The quality of the biological scaffold was additionally assessed by morphological methods, and the contents of extracellular matrix (ECM) fibers were determined both qualitatively and quantitatively. Histological analysis revealed no damage of structural integrity of ECM components, but the scaffold elasticity significantly decreased, which was confirmed by the changes in the hysteresis loop without a concomitant decrease in peak loads, with the mechanical strength of the samples being retained. These changes require taking additional measures to prevent a decrease in the effective lung volume.  相似文献   

19.
An overview of the biomechanic and morphogenetic function of the plant extracellular matrix (ECM) in its primary state is given. ECMs can play a pivotal role in cellular osmo- and volume-regulation, if they enclose the cell hermetically and constrain hydrostatic pressure evoked by osmotic gradients between the cell and its environment. From an engineering viewpoint, such cell walls turn cells into hydraulic machines, which establishes a crucial functional differences between cell walls and other cellular surface structures. Examples of such hydraulic machineries are discussed. The function of cell walls in the control of pressure, volume, and shape establishes constructional evolutionary constraints, which can explain aspects commonly considered typical of plants (sessility, autotrophy). In plants, 'cell division' by insertion of a new cell wall is a process of internal cytoplasmic differentiation. As such it differs fundamentally from cell separation during cytokinesis in animals, by leaving the coherence of the dividing protoplast basically intact. The resulting symplastic coherence appears more important for plant morphogenesis than histological structure; similar morphologies are realized on the basis of distinct tissue architectures in different plant taxa. The shape of a plant cell is determined by the shape its cell wall attains under multiaxial tensile stress. Consequently, the development of form in plants is achieved by a differential plastic deformation of the complex ECM in response to this multiaxial force (hydrostatic pressure). Current concepts of the regulation of these deformation processes are briefly evaluated.  相似文献   

20.
Summary Endothelial cells (ECs) may behave as hemodynamic sensors, translating mechanical information from the blood flow into biochemical signals, which may then be transmitted to underlying smooth muscle cells. The extracellular matrix (ECM), which provides adherence and integrity for the endothelium, may serve an important signaling function in vascular diseases such as atherogenesis, which has been shown to be promoted by low and oscillating shear stresses. In this study, confluent bovine aortic ECs (BAECs) were exposed to an oscillatory shear stress or to a hydrostatic pressure of 40 mmHg for time periods of 12 to 48 h. Parallel control cultures were maintained in static condition. Although ECs exposed to hydrostatic pressure or to oscillatory flow had a polygonal morphology similar to that of control cultures, these cells possessed more numerous central stress fibers and exhibited a partial loss of peripheral bands of actin, in comparison to static cells. In EC cultures exposed to oscillatory flow or hydrostatic pressure, extracellular fibronectin (Fn) fibrils were more numerous than in static cultures. Concomitantly, a dramatic clustering ofα 5β1 Fn receptors and of the focal contact-associated proteins vinculin and talin occurred. Laminin (Ln) and collagen type IV formed a network of thin fibrils in static cultures, which condensed into thicker fibers when BAECs were exposed to oscillatory shear stress or hydrostatic pressure. The ECM-associated levels of Fn and Ln were found to be from 1.5-to 5-fold greater in cultures exposed to oscillatory shear stress or pressure for 12 and 48 h, than in static cultures. The changes in the organization and composition of ECM and focal contacts reported here suggest that ECs exposed to oscillatory shear stress or hydrostatic pressure may have different functional characteristics from cells in static culture, even though ECs in either environment exhibit a similar morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号