首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoarthritis (OA); the most common form of degenerative joint disease, is associated with variations in pro-inflammatory growth factor levels, inflammation and hypocellularity resulting from chondrocyte apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide endowed with a range of trophic effects in several cell types; including chondrocytes. However; its role in OA has not been studied. To address this issue, we investigated whether PACAP expression is affected in OA cartilage obtained from experimentally-induced OA rat models, and then studied the effects of PACAP in isolated chondrocytes exposed to IL-1β in vitro to mimic the inflammatory milieu of OA cartilage. OA induction was established by histomorphometric and histochemical analyses. Changes in PACAP distribution in cartilage, or its concentration in synovial fluid (SF), were assessed by immunohistochemistry and ELISA. Results showed that PACAP abundance in cartilage tissue and SF was high in healthy controls. OA induction decreased PACAP levels both in affected cartilage and SF. In vitro, PACAP prevented IL-1β-induced chondrocyte apoptosis, as determined by MTT assay; Hoechst staining and western blots of apoptotic-related proteins. These changes were also accompanied by decreased i-NOS and COX-2 levels, suggesting an anti-inflammatory effect. Altogether, these findings support a potential role for PACAP as a chondroprotective agent for the treatment of OA.  相似文献   

2.
YKL-40, a pleotropic cytokine, is emerging as a risk factor and a prognostic predictor of atherosclerotic cardiovascular disease. We attempted to elucidate the genetic, clinical and biochemical correlates of circulating YKL-40 level and, by combining it with CHI3L1 gene variants, with the risk and long-term mortality of peripheral artery disease (PAD). Plasma YKL-40 concentrations were measured in 612 Taiwanese individuals who had no clinically overt systemic disease. Clinical parameters, CHI3L1 gene promoter variants and 18 biomarker levels were analyzed. Eighty-six PAD patients were further enrolled for analysis. Significant associations were found between CHI3L1 genotypes/haplotypes and YKL-40 levels for the health examination subjects (smallest p = 8.36 × 10−7 for rs4950928 and smallest p = 1.72 × 10−10 for haplotype TGG) and also for PAD patients. For the health examination subjects, circulating YKL-40 level, but not CHI3L1 gene variants, were positively associated with age, smoking, and circulating levels of triglyceride, lipocalin 2 and multiple inflammatory biomarkers and negatively associated with low-density-lipoprotein cholesterol levels. Circulating YKL-40 level is also significantly associated with the risk of PAD (p = 3.3 × 10−23). Circulating YKL40 level, but not CHI3L1 gene promoter variants, is associated with the risk of PAD in Taiwanese. The association of YKL-40 levels with multiple quantitative traits relating to the risk of PAD may provide a molecular basis linking YKL-40 to atherosclerotic cardiovascular disease.  相似文献   

3.
The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1) is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1) was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.  相似文献   

4.
Firstly, our research group identified Sutai pigs’ phenotypes that exhibited extreme resistance and susceptibility to the Escherichia coli F18 respectively, and then eight ETEC (Enterotoxigenic Escherichia coli) F18-resistant piglets and eight ETEC F18-sensitive piglets were selected. Then, the TAP1 (Transporter associated with antigen processing) mRNA relative expression levels were analyzed in 11 tissues of the resistant and susceptible phenotypes. Simultaneously, we detected the genetic variations in exon 3 of the TAP1 gene and evaluated the TAP1 mRNA expression levels among the different genotype pigs to study the effects of the genetic variation on gene expression, and the E. coli F18 resistance. The results revealed higher expression levels in the resistant genotypes than that in the susceptible genotypes in 11 tissues, with significant differences in the spleen, lymph node, lung, thymus, duodenum and jejunum. Furthermore, a G729A mutation was identified in the TAP1 gene exon 3, and this mutation deviates from Hardy-Weinberg equilibrium (p < 0.01). The TAP1 mRNA levels in GG genotype were significantly higher than that in the other two genotypes, with significant differences in the liver, lung, kidney, thymus, lymph node, duodenum and jejunum tissues. We speculated that high expression of the TAP1 gene might confer resistance against the E. coli F18, the G729A mutation had a significant effect on the mRNA expression, and individuals with the GG genotype possessed a stronger ability to resist the E. coli F18 infection.  相似文献   

5.
Variations in genes involved in DNA repair systems have been proposed as risk factors for the development of preeclampsia (PE). We conducted a case-control study to investigate the association of Human apurinic/apyrimidinic (AP) endonuclease (APEX1) Asp148Glu (rs1130409), Xeroderma Pigmentosum group D (XPD) Lys751Gln (rs13181), X-ray repair cross-complementing group 1 (XRCC) Arg399Gln (rs25487) and X-ray repair cross-complementing group 3 (XRCC3) Thr241Met (rs861539) polymorphisms with PE in a Mexican population. Samples of 202 cases and 350 controls were genotyped using RTPCR. Association analyses based on a χ2 test and binary logistic regression were performed to determine the odds ratio (OR) and a 95% confidence interval (95% CI) for each polymorphism. The allelic frequencies of APEX1 Asp148Glu polymorphism showed statistical significant differences between preeclamptic and normal women (p = 0.036). Although neither of the polymorphisms proved to be a risk factor for the disease, the APEX1 Asp148Glu polymorphism showed a tendency of association (OR: 1.74, 95% CI = 0.96–3.14) and a significant trend (p for trend = 0.048). A subgroup analyses revealed differences in the allelic frequencies of APEX1 Asp148Glu polymorphism between women with mild preeclampsia and severe preeclampsia (p = 0.035). In conclusion, our results reveal no association between XPD Lys751Gln, XRCC Arg399Gln and XRCC3 Thr241Met polymorphisms and the risk of PE in a Mexican mestizo population; however, the results in the APEX1 Asp148Glu polymorphism suggest the need for future studies using a larger sample size.  相似文献   

6.
AMT1-3 encodes the high affinity NH4+ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants.  相似文献   

7.
8.
Osteoarthritis (OA) is a multifactorial disease which is characterized by a change in the homeostasis of the extracellular matrix (ECM). The ECM is essential for the function of the articular cartilage and plays an important role in cartilage mechanotransduction. To provide a better understanding of the interaction between the ECM and the actin cytoskeleton, we investigated the localization and expression of the Ca2+-dependent proteins cartilage oligomeric matrix protein (COMP), thrombospondin-1 (TSP-1), plastin 3 (PLS3) and stromal interaction molecule 1 (STIM1). We investigated 16 patients who suffered from varus knee OA and performed a topographical analysis of the cartilage from the medial and lateral compartment of the proximal tibial plateau. In a varus knee, OA is more pronounced in the medial compared to the lateral compartment as a result of an overloading due to the malalignment. We detected a location-dependent staining of PLS3 and STIM1 in the articular cartilage tissue. The staining intensity for both proteins correlated with the degree of cartilage degeneration. The staining intensity of TSP-1 was clearly reduced in the cartilage of the more affected medial compartment, an observation that was confirmed in cartilage extracts by immunoblotting. The total amount of COMP was unchanged; however, slight changes were detected in the localization of the protein. Our results provide novel information on alterations in OA cartilage suggesting that Ca2+-dependent mechanotransduction between the ECM and the actin cytoskeleton might play an essential role in the pathomechanism of OA.  相似文献   

9.
YABBY gene family plays an important role in the polarity development of lateral organs. We isolated the BraYAB1-702 gene, a member of the YABBY gene family, from young leaves of Chinese cabbage line 06J45. The full-length gene has a 937 bp CDNA sequence and contains an open reading frame (ORF) of 702 bp. The subcellular localization analysis showed that the expression product of the gene was localized in the nucleus. Ectopic expression of BraYAB1-702 in Arabidopsis thaliana caused leaf curling from the adaxial epidermises to abaxial epidermises; the partial abaxialization of the adaxial epidermises of leaves; leaf trichomes and stomata numbers being significantly increased; the plants being severely stunted; the flowering stage being remarkably delayed and inhibiting the development of shoot apical meristem (SAM) with the down-regulation of the expression of SHOOT MERISTEMLESS (STM), Brevipedicellus (BP) and KNAT2 which were related to the development of shoot apical meristem. These results from the present research help to reveal the molecular mechanism of BraYAB1-702 gene in the establishment of adaxial–abaxial polarity of the lateral organs in Chinese cabbage.  相似文献   

10.
11.
Collagen, type III, alpha-1 (COL3A1) is essential for normal collagen I fibrillogenesis in many organs. There are differences in phenotypes of mutations in the COL3A1 gene in humans and mutations in mice. In order to investigate whether the regulation and gene network of COL3A1 is the same in healthy populations of mice and humans, we compared the quantitative trait loci (QTL) that regulate the expression level of COL3A1 and the gene network of COL3A1 pathways between humans and mice using whole genome expression profiles. Our results showed that, for the regulation of expression of Col3a1 in mice, an eQTL on chromosome (Chr) 12 regulates the expression of Col3a1. However, expression of genes in the syntenic region on human Chr 7 has no association with the expression level of COL3A1. For the gene network comparison, we identified 44 top genes whose expression levels are strongly associated with that of Col3a1 in mice. We next identified 41 genes strongly associated with the expression level of COL3A1 in humans. There are a few but significant differences in the COL3A1 gene network between humans and mice. Several genes showed opposite association with expression of COL3A1. These genes are known to play important roles in development and function of the extracellular matrix of the lung. Difference in the molecular pathway of key genes in the COL3A1 gene network in humans and mice suggest caution should be used in extrapolating results from models of human lung diseases in mice to clinical lung diseases in humans. These differences may influence the efficacy of drugs in humans whose development employed mouse models.  相似文献   

12.
Pepper (Capsicum annuum L.) is sensitive to heat stress (HS). Heat shock proteins 70 (Hsp70s) play a crucial role in protecting plant cells against HS and control varies characters in different plants. However, CaHsp70-1 gene was not well characterized in pepper. In this study, CaHsp70-1 was cloned from the pepper thermotolerant line R9, which encoded a protein of 652 amino acids, with a molecular weight of 71.54 kDa and an isoelectric point of 5.20. CaHsp70-1 belongs to the cytosolic Hsp70 subgroup, and best matched with tomato SlHsp70. CaHsp70-1 was highly induced in root, stem, leaf and flower in R9 with HS treatment (40 °C for 2 h). In both thermosensitive line B6 and thermotolerant line R9, CaHsp70-1 significantly increased after 0.5 h of HS (40 °C), and maintained in a higher level after 4 h HS. The expression of CaHsp70-1 induced by CaCl2, H2O2 and putrescine (Put) under HS were difference between B6 and R9 lines. The different expression patterns may be related to the differences in promoters of CaHsp70-1 from the two lines. These results suggest that CaHsp70-1 as a member of cytosolic Hsp70 subgroup, may be involved in HS defense response via a signal transduction pathway contained Ca2+, H2O2 and Put.  相似文献   

13.
We cloned and sequenced the waaL (rfaL) gene from Bradyrhizobium japonicum, which infects soybean and forms nitrogen-fixing nodules on soybean roots. waaL has been extensively studied in the lipopolysaccharide (LPS) biosynthesis of enteric bacteria, but little is known about its function in (brady)rhizobial LPS architecture. To characterize its role as O-antigen ligase in the LPS biosynthesis pathway, we constructed a waaL knock-out mutant and its complemented strain named JS015 and CS015, respectively. LPS analysis showed that an LPS structure of JS015 is deficient in O-antigen as compared to that of the wild type and complemented strain CS015, suggesting that WaaL ligates the O-antigen to lipid A-core oligosaccharide to form a complete LPS. JS015 also revealed increased cell surface hydrophobicity, but it showed decreased motility in soft agar plates. In addition to the alteration in cell surface properties, disruption of the waaL gene caused increased sensitivity of JS015 to hydrogen peroxide, osmotic pressure, and novobiocin. Specifically, plant tests revealed that JS015 failed to nodulate the host plant soybean, indicating that the rhizobial waaL gene is responsible for the establishment of a symbiotic relationship between soybean and B. japonicum.  相似文献   

14.
Myostatin (MSTN) is a member of the transforming growth factor-β superfamily that negatively regulates skeletal muscle development and growth. In the present study, partial genomic fragments of MSTN were screened for single nucleotide polymorphisms (SNPs) in selected common carp individuals from wild populations, and two SNPs in intron 2 (c.371 + 749A > G, c.371 + 781T > C) and two synonymous SNPs in exon 3 (c.42A > G, c.72C > T) were identified. Genotyping by direct sequencing of polymerase chain reaction (PCR) products for these four SNPs were performed in 162 individuals from a commercial hatchery population. Association analysis showed that two SNPs in exon 3 were significantly associated with body weight (BW) and condition factor (K), and haplotype analyses revealed that haplotype H7H8 showed better growth performance. Our results demonstrated that some of the SNPs in MSTN may have positive effects on growth traits and suggested that MSTN could be a candidate gene for growth and marker-assisted selection in common carp.  相似文献   

15.
RNA interference (RNAi) offers a novel tool to manage hemipteran pests. For the success of RNAi based pest control in the field, a robust and systemic RNAi response is a prerequisite. We identified and characterized major genes of the RNAi machinery, Dicer2 (Dcr2), Argonaute2 (Ago2), and R2d2 in Aphis glycines, a serious pest of soybean. The A. glycines genome encodes for at least one copy of Dcr2, R2d2 and Ago2. Comparative and molecular evolution analyses (dN/dS) showed that domain regions of encoded proteins are highly conserved, whereas linker (non-domain) regions are diversified. Sequence homology and phylogenetic analyses suggested that the RNAi machinery of A. glycines is more similar to that of Tribolium casteneum as compared to that of Drosophila melanogaster. We also characterized Sid1, a major gene implicated in the systemic response for RNAi-mediated gene knockdown. Through qPCR, Dcr2, R2d2, Ago2, and Sid1 were found to be expressed at similar levels in various tissues, but higher expression of Dcr2, R2d2, and Ago2 was seen in first and second instars. Characterization of RNAi pathway and Sid1 in A. glycines will provide the foundation of future work for controlling one of the most important insect pests of soybean in North America.  相似文献   

16.
Ryanodine receptors (RyRs) play a critical role in regulating the release of intracellular calcium, which enables them to be effectively targeted by the two novel classes of insecticides, phthalic acid diamides and anthranilic diamides. However, less information is available about this target site in insects, although the sequence and structure information of target molecules are essential for designing new control agents of high selectivity and efficiency, as well as low non-target toxicity. Here, we provided sufficient information about the coding sequence and molecular structures of RyR in T. citricida (TciRyR), an economically important pest. The full-length TciRyR cDNA was characterized with an open reading frame of 15,306 nucleotides, encoding 5101 amino acid residues. TciRyR was predicted to embrace all the hallmarks of ryanodine receptor, typically as the conserved C-terminal domain with consensus calcium-biding EF-hands (calcium-binding motif) and six transmembrane domains, as well as a large N-terminal domain. qPCR analysis revealed that the highest mRNA expression levels of TciRyR were observed in the adults, especially in the heads. Alternative splicing in TciRyR was evidenced by an alternatively spliced exon, resulting from intron retention, which was different from the case of RyR in Myzus persicae characterized with no alternative splicing events. Diagnostic PCR analysis indicated that the splicing of this exon was not only regulated in a body-specific manner but also in a stage-dependent manner. Taken together, these results provide useful information for new insecticide design and further insights into the molecular basis of insecticide action.  相似文献   

17.
Osteoarthritis (OA) occurs not only in the knee but also in peripheral joints throughout the whole body. Previously, we have shown that the expression of cellular communication network factor 3 (CCN3), a matricellular protein, increases with age in knee articular cartilage, and the misexpression of CCN3 in cartilage induces senescence-associated secretory phenotype (SASP) factors, indicating that CCN3 promotes cartilage senescence. Here, we investigated the correlation between CCN3 expression and OA degenerative changes, principally in human femoral head cartilage. Human femoral heads obtained from patients who received total hip arthroplasty were categorized into OA and femoral neck fracture (normal) groups without significant age differences. Gene expression analysis of RNA obtained from femoral head cartilage revealed that CCN3 and MMP-13 expression in the non-weight-bearing part was significantly higher in the OA group than in the normal group, whereas the weight-bearing OA parts and normal cartilage showed no significant differences in the expression of these genes. The expression of COL10A1, however, was significantly higher in weight-bearing OA parts compared with normal weight-bearing parts, and was also higher in weight-bearing parts compared with non-weight-bearing parts in the OA group. In contrast, OA primary chondrocytes from weight-bearing parts showed higher expression of CCN3, p16, ADAMTS4, and IL-1β than chondrocytes from the corresponding normal group, and higher ADAMTS4 and IL-1β in the non-weight-bearing part compared with the corresponding normal group. Acan expression was significantly lower in the non-weight-bearing group in OA primary chondrocytes than in the corresponding normal chondrocytes. The expression level of CCN3 did not show significant differences between the weight-bearing part and non-weight-bearing part in both OA and normal primary chondrocytes. Immunohistochemical analysis showed accumulated CCN3 and aggrecan neoepitope staining in both the weight-bearing part and non-weight-bearing part in the OA group compared with the normal group. The CCN3 expression level in cartilage had a positive correlation with the Mankin score. X-ray analysis of cartilage-specific CCN3 overexpression mice (Tg) revealed deformation of the femoral and humeral head in the early stage, and immunohistochemical analysis showed accumulated aggrecan neoepitope staining as well as CCN3 staining and the roughening of the joint surface in Tg femoral and humeral heads. Primary chondrocytes from the Tg femoral head showed enhanced expression of Ccn3, Adamts5, p16, Il-6, and Tnfα, and decreased expression of Col2a1 and -an. These findings indicate a correlation between OA degenerative changes and the expression of CCN3, irrespective of age and mechanical loading. Furthermore, the Mankin score indicates that the expression level of Ccn3 correlates with the progression of OA.  相似文献   

18.
Aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn are substances of great interest because of their important pharmacological activities, particularly anti-diabetic, anti-obesity, anti-hyperlipidemic, anti-oxidant, and anti-HIV’s activities. In order to produce large amounts of pure alkaloid for research purposes, a novel method using high-speed counter-current chromatography (HSCCC) was developed. Without any initial cleanup steps, four main aporphine alkaloids, including 2-hydroxy-1-methoxyaporphine, pronuciferine, nuciferine and roemerine were successfully purified from the crude extract by HSCCC in one step. The separation was performed with a simple two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (5:3:3:2.5:5, v/v/v/v/v). In each operation, 100 mg crude extracts was separated and yielded 6.3 mg of 2-hydroxy-1-methoxyaporphine (95.1% purity), 1.1 mg of pronuciferine (96.8% purity), 8.5 mg of nuciferine (98.9% purity), and 2.7 mg of roemerine (97.4%) respectively. The chemical structure of four aporphine alkaloids are identified by means of electrospray ionization MS (ESI-MS) and nuclear magnetic resonance (NMR) analysis. Moreover, the effects of four separated aporphine alkaloids on insulin-stimulated glucose consumption were examined in 3T3-L1 adipocytes. The results showed that 2-hydroxy-1-methoxyaporphine and pronuciferine increased the glucose consumption significantly as rosiglitazone did.  相似文献   

19.
20.
A full-length cDNA coding for hydroperoxide lyase (CsHPL) was isolated from cucumber fruits of No. 26 (Southern China type) and No.14-1 (Northern China type), which differed significantly in fruit flavor. The deduced amino acid sequences of CsHPL from both lines show the same and significant similarity to known plant HPLs and contain typical conserved domains of HPLs. The recombinant CsHPL was confirmed to have 9/13-HPL enzymatic activity. Gene expression levels of CsHPL were measured in different organs, especially in fruits of different development stages of both lines. The HPL activities of fruit were identified basing on the catalytic action of crude enzyme extracts incubating with 13-HPOD (13-hydroperoxy-(9Z,12E)-octadecadienoic acid) and 13-HPOD + 9-HPOD (9-hydroperoxy-(10E,12Z)-octadecadienoic acid), and volatile reaction products were analyzed by GC-MS (gas chromatography-mass spectrometry). CsHPL gene expression in No. 26 fruit occurred earlier than that of total HPL enzyme activity and 13-HPL enzyme activity, and that in No. 14-1 fruit was consistent with total HPL enzyme activity and 9-HPL enzyme activity. 13-HPL enzyme activities decreased significantly and the 9-HPL enzyme activities increased significantly with fruit ripening in both lines, which accounted for the higher content of C6 aldehydes at 0–6 day post-anthesis (dpa) and higher content of C9 aldehydes at 9–12 dpa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号