首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial and temporal distribution of sucrose synthase (RSuS) in rice (Oryza sativa L.) was studied by Western and immunohistochemical analyses using the monospecific antibodies for three RSuS isoforms. In leaf tissues, RSuS1 was localized in the mesophyll while RSuS2 was in the phloem in addition to the mesophyll. In the roots, only RSuS1 was found in the phloem. No RSuS3 could be detected in any parts of etiolated seedlings. The expression of each RSus gene is closely linked to the seed development. RSuS1 was present in the aleurone layers of developing seeds, and at a low level in endosperm cells. RSuS2 was evenly distributed in seed tissues other than the endosperm. RSuS3 was localized predominantly in the endosperm cells. The tissue specific localizations of the three gene products suggest that RSuS1 plays a role in sugar transport into endosperm cells where the reaction catalyzed by RSuS3 provides the precursor of starch synthesis. RSus2, which is ubiquitously expressed, may play a housekeeping role.  相似文献   

2.
Genes encoding two new isoforms of sucrose synthase from barley, HvSs3 and HvSs4, have been characterised and their expression patterns compared with those previously described for HvSs1 and HvSs2, in different organs and during seed maturation and germination. Their response to several abiotic stimuli has also been investigated in leaves: HvSs1 is up-regulated by anoxia and HvSs3 by water deprivation while no response is observed to 150 mM NaCl treatment; HvSs1 and HvSs3 are also induced by cold temperatures. Using translational fusions and transient expression analyses, the four isozymes have been localised not only to the cytoplasm but also along several cytoplasmic tracks and at the inner side of the cell membrane; besides, HvSS1 is also associated with mitochondria, a localisation that has been predicted in silico with the TargetP and Predotar programmes. These data suggest distinct although partially overlapping roles, for the four barley sucrose synthase isoforms, in the channelling of carbon towards different metabolic pathways within the cell.  相似文献   

3.
4.
Molecular Biology Reports - A total of 53 plant species accessions from different geographic regions, including four melatonin precursor-coding genes obtained from Arachis hypogaea (ASMT1, 2, 3 and...  相似文献   

5.
The molecular relationship of placental mammals has attracted great interest in recent years. However, 2 crucial and conflicting hypotheses remain, one with respect to the position of the root of the eutherian tree and the other the relationship between the orders Rodentia, Lagomorpha (rabbits, hares), and Primates. Although most mitochondrial (mt) analyses have suggested that rodents have a basal position in the eutherian tree, some nuclear data in combination with mt-rRNA genes have placed the root on the so-called African clade or on a branch that includes this clade and the Xenarthra (e.g., anteater and armadillo). In order to generate a new and independent set of molecular data for phylogenetic analysis, we have established cDNA sequences from different tissues of various mammalian species. With this in mind, we have identified and sequenced 8 housekeeping genes with moderately fast rate of evolution from 22 placental mammals, representing 11 orders. In order to determine the root of the eutherian tree, the same genes were also sequenced for 3 marsupial species, which were used as outgroup. Inconsistent with the analyses of nuclear + mt-rRNA gene data, the current data set did not favor a basal position of the African clade or Xenarthra in the eutherian tree. Similarly, by joining rodents and lagomorphs on the same basal branch (Glires hypothesis), the data set is also inconsistent with the tree commonly favored in mtDNA analyses. The analyses of the currently established sequences have helped examination of problematic parts in the eutherian tree at the same time as they caution against suggestions that have claimed that basal eutherian relationships have been conclusively settled.  相似文献   

6.
7.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors are used for the treatment of various disorders related to decline in acetylcholine levels in the brain by inhibiting the activity of the neurotransmitter AChE. The present study reports the potential of endophytic Alternaria spp. for their potential to produce cholinesterase inhibitors active against both acetylcholine and butyrylcholine. Twenty-nine isolates belonging to Alternaria spp. were isolated from different plants and screened. Variation with respect to inhibitor production was observed in different isolates. Out of 29 cultures screened, good cholinesterase (both AChE and BChE) inhibitory activity in range of 70–85% was observed in three isolates, whereas three showed only AChE inhibition. No correlation was observed in AChE and BChE inhibitor production. TLC bioautography for the inhibitor in the selected cultures evinced different Rf values of inhibitors indicating different nature of the compounds produced. In order to analyze evolutionary relationships between producer and non-producer strains, phylogenetic analysis of six producer and five non-producer strains was carried out using amplified ITS-I-5.8SrDNA-ITS-II region. Phylogenetic analysis revealed majority of the non-producer strains to be present on different clades indicating different evolutionary origins. The dual cholinesterase inhibitory activity and the diversity in the inhibitors produced by different isolates could prove to be novel sources of pharmaceutical as well as agriculturally important biomolecules after purification and characterization.  相似文献   

8.
9.
Maize scutellum slices incubated in water utilized sucrose at a maximum rate of 0.12,μmol/min per g fr. wt of slices. When slices were incubated in DNP, there was a three-fold increase in the rate of sucrose utilization. Sucrose breakdown in higher plants can be achieved by pathways starting with either invertase or sucrose synthase (SS). Invertase activity in scutellum homogenates was found only in the cell wall fraction, indicating that SS was responsible for sucrose breakdown in vivo. SS in crude scutellum extracts broke down sucrose to fructose and UDPG at 0.39,μmol/min per g fresh wt of slices. The UDPG formed was not converted to UDP + glucose, UMP + glucose-1-P, UDP + glucose-1-P or broken down by any other means by the crude extract in the absence of PPi. In the presence of PPi, UDPG was broken down by UDPG pyrophosphorylase which had a maximum activity of 26 μmol/min per g fr. wt of slices. Levels of PPi in the scutellum could not be measured using the UDPG pyrophosphorylase: phosphoglucomutase: glucose-6-P dehydrogenase assay because they were too low relative to glucose-6-P which interferes in the assay. An active inorganic pyrophosphatase was present in the scutellum extract which could prevent the accumulation of PPi in the cytoplasm. ATP pyrophosphohydrolase, which hydrolyses ATP to AMP and PPi, was found in the soluble portion of the scutellum extract. The enzyme activity was increased by fructose-2,6-bisP and Ca2+. In the presence of both activators, enzyme activity was 1.1 μmol/min per g fr. wt of slices, a rate sufficient to supply PPi for the breakdown of UDPG. These results indicate that sucrose breakdown in maize scutellum cells occurs via the SS: UDPG pyrophosphorylase pathway.  相似文献   

10.
In 12 different Russian and Kazakh potato cultivars, the polymorphism of the glucosyltransferase domain of the sucrose synthase gene was first examined, as well as the polymorphism of the sucrose synthase domain fragment of the same gene in the potato cultivars of Kazakh breed. It was demonstrated that the examined sequences contained point mutations, as well as insertions and deletions, including those not described earlier. Amino acid substitutions specific to heat- and drought-tolerant varieties were also identified and could be associated with the development of abiotic stress resistance.  相似文献   

11.
Analysis of the sucrose synthase gene family in Arabidopsis   总被引:1,自引:0,他引:1  
The properties and expression patterns of the six isoforms of sucrose synthase in Arabidopsis are described, and their functions are explored through analysis of T-DNA insertion mutants. The isoforms have generally similar kinetic properties. Although there is variation in sensitivity to substrate inhibition by fructose this is unlikely to be of major physiological significance. No two isoforms have the same spatial and temporal expression patterns. Some are highly expressed in specific locations, whereas others are more generally expressed. More than one isoform is expressed in all organs examined. Mutant plants lacking individual isoforms have no obvious growth phenotypes, and are not significantly different from wild-type plants in starch, sugar and cellulose content, seed weight or seed composition under the growth conditions employed. Double mutants lacking the pairs of similar isoforms sus2 and sus3, and sus5 and sus6, are also not significantly different in these respects from wild-type plants. These results are surprising in the light of the marked phenotypes observed when individual isoforms are eliminated in crop plants including pea, maize, potato and cotton. A sus1/sus4 double mutant grows normally in well-aerated conditions, but shows marked growth retardation and accumulation of sugars when roots are subjected to hypoxia. The sucrose synthase activity in roots of this mutant is 3% or less of wild-type activity. Thus under well-aerated conditions sucrose mobilization in the root can proceed almost entirely via invertases without obvious detriment to the plant, but under hypoxia there is a specific requirement for sucrose synthase activity.  相似文献   

12.

Background  

Phylogenetic methods are well-established bioinformatic tools for sequence analysis, allowing to describe the non-independencies of sequences because of their common ancestor. However, the evolutionary profiles of bacterial genes are often complicated by hidden paralogy and extensive and/or (multiple) horizontal gene transfer (HGT) events which make bifurcating trees often inappropriate. In this context, plasmid sequences are paradigms of network-like relationships characterizing the evolution of prokaryotes. Actually, they can be transferred among different organisms allowing the dissemination of novel functions, thus playing a pivotal role in prokaryotic evolution. However, the study of their evolutionary dynamics is complicated by the absence of universally shared genes, a prerequisite for phylogenetic analyses.  相似文献   

13.
Isolated rice embryos were used to investigate the regulatory effects of endosperm extracts and pure sugars on the expression of alpha-amylase gene RAmy3D and a sucrose synthase gene homologous to the maize isozyme Ss2. The high-level expression of RAmy3D in the scutella of isolated embryos could be inhibited by a variety of sugars as well as endosperm extracts from germinated rice grains. Glucose, at a concentration of 250 mM, was most effective in repressing RAmy3D mRNA accumulation. Furthermore, this repression was reversible. Interestingly, RAmy3D repression was always accompanied by the induction of sucrose synthase gene expression. These results support a model in which the expression of alpha-amylase and sucrose synthase genes in the rice scutellum are counter-regulated by the influx of sugars from the endosperm.  相似文献   

14.
15.
Sucrose and reducing sugar concentrations in petals of cut carnation flowers, whose life was prolonged up to 7 days by bathing stalks in sucrose solutions, were respectively 3-fold and 2-fold higher than those bathed in water. Reducing sugar concentrations were about 7-fold higher than sucrose concentrations. A study of invertase and sucrose synthase activities in flower petals of carnation and four other species of flowers revealed that both enzymes may be involved in hydrolysis of translocated sucrose. Invertase activity, while being up to 20-fold higher than sucrose synthase activity in some species was approximately comparable in others. More detailed studies on invertase from petals of 3 flower species demonstrated the presence of only the acid form of the enzyme with a Km value for sucrose of about 2.5 mM.  相似文献   

16.
In this study, we carried out the isolation and characterization of chitin synthase genes (CHS) of the main citrus fruit postharvest pathogen Penicillium digitatum. Using distinct sets of degenerate primers designed from conserved regions of CHS genes of yeast and filamentous fungi, PCR methods, and a DNA genomic library, five putative CHS genes (PdigCHSI, PdigCHSII, PdigCHSIII, PdigCHSV, and PdigCHSVII) were identified, isolated, sequenced, and characterized. Phylogenetic analyses, sequence identity, and domain conservation support the annotation as CHS. A very high sequence identity and strong synteny were found with corresponding regions from the genome of Penicillium chrysogenum. Gene expression of P. digitatum CHS genes during mycelium axenic growth, under oxidative and osmotic stress conditions, and during infection of citrus fruits was confirmed and quantified using quantitative RT-PCR (qRT-PCR). PdigCHSIII had the highest expression among the five genes by one order of magnitude, while PdigCHSII had the lowest. However, PdigCHSII was strongly induced coincident with conidial production, suggesting a role in conidiogenesis. The expression of PdigCHSI, PdigCHSIII, PdigCHSV, and PdigCHSVII was upregulated during infection of citrus fruit. PdigCHSV and PdigCHSVII coexpressed in most of the experiments carried out, and they are separated by a 1.77 kb intergenic region and arranged in opposite directions.  相似文献   

17.
18.
Summary The DNAs of two diploid species of Gossypium, G. herbaceum var. africanum (A1 genome) and G. raimondii (D5 genome), and the allotetraploid species, G. hirsutum (Ah and Dh genomes), were characterized by kinetic analyses of single copy and repetitive sequences. Estimated haploid genome sizes of A1 and D5 were 1.04 pg and 0.68 pg, respectively, in approximate agreement with cytological observations that A genome chromosomes are about twice the size of D genome chromosomes. This differences in genome size was accounted for entirely by differences in the major repetitive fraction (0.56 pg versus 0.20 pg), as single copy fractions of the two genomes were essentially identical (0.41 pg for A1 and 0.43 pg for D5). Kinetic analyses and thermal denaturation measurements of single copy duplexes from reciprocal intergenomic hybridizations showed considerable sequence similarity between A1 and D5 genomes (77% duplex formation with an average thermal depression of 6 °C). Moreover, little sequence divergence was detectable between diploid single copy sequences and their corresponding genomes in the allotetraploid, consistent with previous chromosome pairing observations in interspecific F1 hybrids.Journal paper No. 4461 of the Arizona Agricultural Experiment Station  相似文献   

19.
The kinetic data on sugarcane (Saccharum spp. hybrids) sucrose synthase (SuSy, UDP-glucose: D-fructose 2-alpha-D-glucosyltransferase, EC 2.4.1.13) are limited. We characterized kinetically a SuSy activity partially purified from sugarcane variety N19 leaf roll tissue. Primary plot analysis and product inhibition studies showed that a compulsory order ternary complex mechanism is followed, with UDP binding first and UDP-glucose dissociating last from the enzyme. Product inhibition studies showed that UDP-glucose is a competitive inhibitor with respect to UDP and a mixed inhibitor with respect to sucrose. Fructose is a mixed inhibitor with regard to both sucrose and UDP. Kinetic constants are as follows: Km values (mm, +/- SE) were, for sucrose, 35.9 +/- 2.3; for UDP, 0.00191 +/- 0.00019; for UDP-glucose, 0.234 +/- 0.025 and for fructose, 6.49 +/- 0.61. values were, for sucrose, 227 mm; for UDP, 0.086 mm; for UDP-glucose, 0.104; and for fructose, 2.23 mm. Replacing estimated kinetic parameters of SuSy in a kinetic model of sucrose accumulation with experimentally determined parameters of the partially purified isoform had significant effects on model outputs, with a 41% increase in sucrose concentration and 7.5-fold reduction in fructose the most notable. Of the metabolites included in the model, fructose concentration was most affected by changes in SuSy activity: doubling and halving of SuSy activity reduced and increased the steady-state fructose concentration by about 42 and 140%, respectively. It is concluded that different isoforms of SuSy could have significant differential effects on metabolite concentrations in vivo, therefore impacting on metabolic regulation.  相似文献   

20.
Nitric oxide (NO) is a free radical that is largely produced by three isoforms of NO synthase (NOS): neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). NO regulates numerous processes in the gastrointestinal tract; however, the overall role that NO plays in intestinal inflammation is unclear. NO is upregulated in both ulcerative colitis and Crohn's disease as well as in animal models of colitis. There have been conflicting reports on whether NO protects or exacerbates injury in colitis or is simply a marker of inflammation. To determine whether the site, timing, and level of NO production modulate the effect on the inflammatory responses, the dextran sodium sulfate model of colitis was assessed in murine lines rendered deficient in iNOS, nNOS, eNOS, or e/nNOS by targeted gene disruption. The loss of nNOS resulted in more severe disease and increased mortality, whereas the loss of eNOS or iNOS was protective. Furthermore, concomitant loss of eNOS reversed the susceptibility found in nNOS-/- mice. Deficiencies in specific NOS isoforms led to distinctive alterations of inflammatory responses, including changes in leukocyte recruitment and alterations in colonic lymphocyte populations. The present studies indicate that NO produced by individual NOS isoforms plays different roles in modulating an inflammatory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号