首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
铝合金等离子体基离子注入氮/钛结构及摩擦学特性   总被引:1,自引:0,他引:1  
通过X射线光电子能谱(XPS)和小掠射角X射线衍射(GXRD)分析测定了铝合金LY12等离子体基离子注入氮再注入钛的改性层成分分布及相组成。测量了纳米硬度,进行了摩擦磨损试验及磨痕形貌观察。讨论了磁控靶溅射电流40mA、400mA对改性层结构和摩擦学性能的影响。结果表明,氮在注入层呈高斯分布,钛沿注入方向逐渐减少,钛的注入使氮的分布宽,在400mA下注钛有钛的沉积层出现。和LY12相比,摩擦学性能显著提高,粘着磨损程度显著减轻,400mA下改善幅度更大,形成TiO1、TiN、TiAl、Al2O3、AIN或Ti相是主要原因。  相似文献   

2.
铝合金表面氮和钛等离子体基离子注入改性层XPS研究   总被引:2,自引:1,他引:2  
用XPS(X射线光电子能谱 )和GXRD(小掠射角X射线衍射 )研究了铝合金等离子体基离子注入氮再注入钛最后复合注入氮和钛改性层的成分分布及相结构 ,并用Gaussian Lorentzion峰位拟合方法分析了改性层中不同深度处各元素的化学态及其在相结构中的分布。结果表明 ,复合改性层的表层有较高浓度的氮和钛 ,次表层有较高浓度的钛及一定浓度的氮 ,铝 /钛界面有较宽的过渡区 ,基体中氮呈高斯分布。改性层主要由TiN ,TiO2 ,α Ti,TiAl3 ,Al2 O3 和AlN等组成 ,氮和氧还以固溶态的形式存在。最表层含有大量TiN及部分TiO2 ;次表层含有大量α Ti及许多TiN ;过渡层由TiO2 ,TiN ,TiAl3 ,Al2 O3 和AlN等组成 ;注氮层包括AlN ,Al2 O3 及α(Al)。各元素在相应相结构中的浓度分布与其成分深度分布基本相似。  相似文献   

3.
Al合金等离子体基离子注入形成AlN/DLC层结构研究   总被引:3,自引:0,他引:3  
廖家轩  夏立芳  孙跃 《金属学报》2001,37(9):922-926
用X射线光电子能谱(XPS)和小掠射角X射线衍射(GAXRD)研究了铝合金LY12等离子体基离子注入N+原位注入C形成AlN/DLC(类金刚石碳膜)改性层的成分分布及相结构,用激光Raman光谱分析了表面单一碳层的结构,对过渡层元素进行了Gaussian-Lorentzion峰位拟合分析。结果表明,N浓度在注入层呈Gauss分布,C浓度沿注入方向逐渐减小。C的注入使N分布有所拓宽。C在表面还能形成一层单一稳定的400nm的DLC膜。过度层主要由Al4C3,Al2O3,AlN,β-C3N4等组成。改性层总厚度达800nm。  相似文献   

4.
用XPS和GXRD研究了铝合金等离子体基离子注入氮后再注入钛最后复合注入氮和钛改性层的成分深度分布及相结构 ,用XTEM观察了改性层截面的组织结构 ,用AFM观察了改性层的表面形貌 ,在此基础上测量了改性层的纳米硬度 ,进行了球盘摩擦磨损试验。结果表明 ,钛中间层使复合改性层的厚度有效增加 ,主要由α Ti,TiN及TiO2 组成 ,且TiN及TiO2 弥散分布在α Ti基材中 ,使表面形貌有所改善 ,使表面硬度及耐磨性明显提高。  相似文献   

5.
采用低温等离子体聚合改性技术在医用钛表面聚合丙烯胺单体,沉积一层聚合物改性层,在此过程中,以氮等离子体注入作为预处理,研究等离子体预处理对表面丙烯胺聚合改性层的性能影响。采用扫描电子显微镜、原子力显微镜、以及能谱分析、傅里叶红外光谱分析仪对不同条件下等离子体聚合物表面改性层的形貌、拓扑结构、官能团结构及化学成分进行研究,以及通过表面接触角测试仪分析表面亲水性能。结果显示,低温表面等离子体聚合手段能够在钛合金表面形成一层厚度可以调节的纳米聚合物改性层,电化学测试表明,聚合物改性层能够提高表面耐腐蚀性能;接触角测试表明表面聚合物改性层能够提高钛合金表面的亲水性能;FTIR分析表明低温表面等离子体聚合手段能够很好的保留丙烯胺中的氨基官能团,因此能够改善聚合物层的生物活性,有利于细胞的生长。同时,氮的注入之所以能够提高丙烯胺表面聚合物层与基体的结合效率,是因为氮等离子体注入预处理能够在钛合金表面形成梯度结构的过度TiN层,能够有利于等离子聚合过程中–C–N、C–H、–C–NH2、–O=C–NH2等官能团与基体之间的键合。  相似文献   

6.
利用金属蒸汽真空弧(MEVVA)离子源在AZ31镁合金表面进行了氮钛(N/Ti)双离子共注入。通过俄歇电子能谱(AES)、扫描电镜(SEM)、X射线衍射(XRD)、电化学测试系统和显微硬度计,分析比较了双离子共注入前后试样表面的相组成、原子浓度-深度分布、抗腐蚀性能和显微硬度。结果表明:基体合金表面改性层主要由Mg、MgO、Ti、TiO2、TiN等相组成;改性层厚约180 nm;处理后试样显微硬度较基体提高了50%;在3.5%饱和NaCl溶液中的腐蚀电位提高600 mV,腐蚀电流密度下降110μA.cm2,极化电阻增加了67.9倍。  相似文献   

7.
对TA1纯钛进行了离子碳氮共渗。用扫描电镜对离子碳氮共渗的TA1纯钛改性层进行了观察。用X射线衍射仪测定了改性层的物相。用能谱仪对改性层作成分分析。用显微硬度计测定改性层的硬度。用SRV摩擦磨损试验机测定摩擦系数,在往复式磨损试验机上进行,磨损试验。结果表明,经离子碳氮共渗的TA1纯钛表面获得了金黄色、均匀的Ti2N/TiN改性层,显微硬度为840HV0.01。碳氮共渗表面改性层能明显提高纯钛TA1的耐磨性。  相似文献   

8.
对Ti6A1 4V合金进行温度范围从 1 0 0℃到 6 0 0℃ ,注入剂量为 4× 1 0 1 7ions.cm- 2 氮离子等离子体源离子注入 (N-PSII)。用俄歇能谱仪 (AES)对注入样品进行元素深度分布剖面分析。用显微硬度计及针盘磨损试验机测试表面改性的效果。利用X射线衍射 (XRD)分析表面改性层结构的变化。利用光学显微镜观察磨痕宽度。分析发现 ,当温度从 1 0 0℃升到 6 0 0℃时 ,注入层厚度明显增加。其中 ,高温注入时获得较高的表面硬度和较好抗磨损性。XRD分析发现 ,随温度升高注入层表面形成TiN和Ti2 N析出相。  相似文献   

9.
为了提高TA2钛合金的耐磨性和耐蚀性,采用激光相变硬化-气体渗氮工艺对TA2钛进行表面改性。利用体视光学显微镜、透射电镜和X射线衍射仪对TA2激光相变硬化-气体渗氮层进行表面形貌、微观组织和相组成分析;利用显微硬度计对两种复合改性层的显微硬度进行测试。结果表明:TA2钛表面经激光相变硬化后,可实现430℃低温渗氮。此条件下晶粒得到细化,亚结构和缺陷密度的增加有利于氮元素和晶内扩散,相变组织与氮势梯度具有良好的对应关系。通过改善渗层的组织结构和化学成分分布状态,获得了性能优良的TA2钛表面硬化层。  相似文献   

10.
钛合金的等离子体浸没离子注入表面强化处理   总被引:5,自引:0,他引:5  
研究了等离子体浸没离子注入(PIII)技术对Ti6A14V合金表面性能的影响。分析比较了灯丝放电PIII和射频辉光放电PIII对基体表面进行氮离子注入后的改性效果。应用X射线衍射仪(XRD),扫描电镜(SEM)分析了注入层的相组成和组织结构:测试了经不同PIII工艺参数处理后试样的显微硬度和摩擦磨损性能。结果表明:氮离子注入使Ti6A14V的粗大晶粒(α-β相)转变为细小致密的晶粒,表面层中形成了耐磨相TiN;处理后试样表面的显微硬度提高了80%,摩擦系数降到0.16,抗磨损性能得到了显著提高。  相似文献   

11.
采用等离子体基离子注入的方法在Ti6Al4V合金表面分别注入N+C、Ti+N和Ti+C元素,注入剂量均为2×1017 ions/cm2,N+C和Ti+N元素的注入负脉冲偏压为-50 kV,Ti+C元素的注入电压分别为-20 kV、-35 kV和-50 kV。通过X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)对注入层进行了微观结构分析,结果表明:Ti+C注入层中存在TiC和Ti-O,Ti+N注入层中存在TiN和Ti-O键。采用纳米压痕仪和球盘磨损试验机对注入层的硬度和摩擦学性能进行了研究。结果表明:在相同注入电压下,Ti+C注入层的硬度最高,其次是Ti+N注入层,N+C注入层的硬度最低;Ti+C 注入层的硬度随着注入电压的增大而增大,最大硬度为11.2GPa。50kV注入层Ti+C具有最低的比磨损率,其值为6.7×10-5mm3/N.m,比磨损率较未处理Ti6Al4V基体下降了1 个数量级以上,表现出优异的耐磨损性能。  相似文献   

12.
1 IntroductionPoorsurface relatedpropertiessuchastribologicalpropertyhaverestrictedthefur therapplicationsofTi 6Al 4Valloyusedinaviationandspacetechnologyforstruc turalpartsandinmedicaltechnologyfortotaljointreplacementsduetoitsuniquecombinationofdesirab…  相似文献   

13.
OXIDATIONOFPMALLOYAl10TiDURINGSLIDINGWEAR①WuNianqiang,WangGuangxin,LiZhizhangDepartmentofMaterialsScienceandEngineering,Zhej...  相似文献   

14.
空气等离子体基注入Ti6Al4V合金摩擦学性能研究   总被引:2,自引:1,他引:1  
采用空气等离子体基离子注入技术对Ti6Al4V合金进行了表面改性。注入负脉冲电压分别为10kV,30kV,50kV,注入剂量为0.6×1017ions/cm2。用X射线光电子能谱仪对注入层元素分布进行了分析,结果表明:改性层的外层为TiO2,外层与内层基体之间存在Ti2O3、TiO、TiN;采用球盘磨损试验机对注入层的摩擦学性能进行了研究。结果表明:随着注入电压的增加,摩擦因数减小,耐磨性能提高。且以50kV注空气最为显著,摩擦因数较基体降低了3倍多,磨损体积与比磨损率较基体均下降了1个数量级以上。注入层硬度比基材Ti6Al4V也有明显提高。  相似文献   

15.
等离子体源离子注入表面改性研究及应用   总被引:8,自引:0,他引:8  
采用等离子体源离子注入技术 (PSII)对W18Cr4V高速钢进行了氮离子注入。用俄歇能谱仪对注入层的成分进行了分析。对注入层的显微硬度和耐磨性进行了测试。用扫描电镜对摩擦磨损表面进行了分析。研究结果表明 :氮在注入层呈高斯分布 ,注入层的硬度和耐磨性均明显提高。对等离子体源离子注入技术在航空液压泵配油盘上的应用进行了研究。应用研究结果表明 :经等离子体源离子注入后的配油盘单位行程内回油量的增加量比未注入前下降约 90 % ,从而明显地增加了配油盘的使用寿命  相似文献   

16.
1.IntroductionAluminumalloysarewidelyusedinaviationandspaceindustryforstructuralparts,buttheengineeringapplicationofthemarelimitbyitslowhardness,strengthandcorrespondinglowwearresistance.Thesurfacemodificationofaluminumalloysbyionimplantationoffers…  相似文献   

17.
采用新型的离子注入技术-离等子体浸没式离子注入对45钢进行了氮离子注入,测定了注入层的氮浓度俄歇剖面会布,显微硬度和摩擦性能,对磨损表面进行了扫描电镜分析。结果表明,采用等离子浸没式离子注入技术能够获得钢表改性效果。  相似文献   

18.
秦华  陶冶  邓斌 《物理测试》2012,30(3):31-34
采用MEVVA离子源技术对由磁过滤阴极真空电弧沉积的TiN薄膜注入不同剂量的Si元素,利用XPS和纳米硬度仪表征Si离子注入后化学成分、元素键合状态以及硬度的变化。结果表明,Si离子注入后,薄膜表面硬度得到提高,5×1016 ions/cm2的样品硬度峰值从27.18GPa增加到39.85GPa,随着注入剂量的增加,纳米硬度峰值有下降的趋势,1×1017 ions/cm2的样品硬度峰值为33.27GPa,但表面改性层的深度增加,纳米硬度在一定的深度范围内得到了整体的提高。离子注入使薄膜表面层的弹性模量显著提高,表层弹性模量随注入剂量的增加而提高。并且由于Si元素的注入,形成了新的微结构相Si3N4,新相的含量与注入剂量有关。  相似文献   

19.
为提高Inconel 718零件的抗磨损性能,采用直线式高能离子注入机对Inconel 718材料进行表面强化。利用X射线衍射仪、电子背散射衍射、X射线光电子谱、俄歇电子能谱等表征材料的组织结构、相组成和元素浓度-深度分布,采用纳米压痕仪、摩擦磨损试验机检测材料的纳米硬度和摩擦磨损性能。结果表明,不同离子注入工艺对Inconel 718抗磨损性能提升具有不同效果,(N+Ti)组合注入可提升基体抗磨损性能达2.5倍以上,纳米硬度提升幅度达到36%。(N+Ti)组合注入工艺在Inconel 718表层形成非晶以及纳米级Ti Nx析出相,随注入深度增加,注入原子主要以间隙或置换形式存在于基体晶格中。  相似文献   

20.
利用高能离子注入及增强沉积系统对Ti6Al7Nb合金做了不同剂量的氮离子注入处理,采用球/平面接触模式,对Ti6Al7Nb合金及其离子注入层/ Zr2O球(直径为25.2 mm)接触副在小牛血清介质条件下进行了扭动微动磨损实验研究。结合动力学分析,借助X射线衍射仪(XRD)、三维形貌仪(3D-profiler)和扫描电镜(SEM)分析了测试材料成分及其扭动微动磨损磨痕形貌和微观组织结构, 探讨了Ti6Al7Nb合金及其离子注入层的扭动微动运行行为和损伤机制。结果表明:N+离子注入在钛合金表面形成了氮化钛层,使钛合金表面的微观硬度明显提高,随着注入剂量的增加,钛合金的硬度逐渐升高,磨痕逐渐变小,磨粒逐渐变细,其抗扭动微动磨损性能也提高  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号