首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural proteins (SP) of the Togaviridae can be deleted in defective interfering RNAs. The dispensability of viral SP has allowed construction of noninfectious viral expression vectors and replicons from viruses of the Alphavirus and Rubivirus genera. Nevertheless, in this study, we found that the SP of rubella virus (RUB) could enhance expression of reporter genes from RUB replicons in trans. SP enhancement required capsid protein (CP) expression and was not due to RNA-RNA recombination. Accumulation of minus- and plus-strand RNAs from replicons was observed in the presence of SP, suggesting that SP specifically affects RNA synthesis. By using replicons containing an antibiotic resistance gene, we found 2- to 50-fold increases in the number of cells surviving selection in the presence of SP. The increases depended significantly on the amount of transfected RNA. Small amounts of RNA or templates that replicated inefficiently showed more enhancement. The infectivity of infectious RNA was increased by at least 10-fold in cells expressing CP. Moreover, virus infectivity was greatly enhanced in such cells. In other cells that expressed higher levels of CP, RNA replication of replicons was inhibited. Thus, depending on conditions, CP can markedly enhance or inhibit RUB RNA replication.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The DNA from astrocytomas that developed in adult owl monkeys 16 to 36 months after intracranial inoculation with JC virus (JCV) was examined for the presence of the JCV genome by hybridization to cloned JCV DNA. The JCV genome was found to be integrated into the cellular DNA in all tumors examined. There was no JCV DNA in normal, uninvolved brain tissue from the same animals. Integration of the genome occurred at a limited number of sites in the cellular DNAs, indicating a clonal origin for the tumors, but none of the tumors had integration sites in common. In all but one of the tumors, there was tandem, head-to-tail integration of two or more copies of the JC genome. In a tumor which had only one integration site and could be analyzed more extensively, there appeared to be a complete copy of the JCV genome present, although deletions of small portions of the genome would not have been detected.  相似文献   

12.
The purified human single-stranded DNA binding protein, replication protein A (RP-A), forms specific complexes with purified SV40 large T antigen and with purified DNA polymerase alpha-primase, as shown by ELISA and a modified immunoblotting technique. RP-A associated efficiently with the isolated primase, as well as with intact polymerase alpha-primase. The 70 kDa subunit of RP-A was sufficient for association with polymerase alpha-primase. Purified SV40 large T antigen bound to intact RP-A and to polymerase-primase, but not to any of the separated subunits of RP-A or to the isolated primase. These results suggest that the specific protein-protein interactions between RP-A, polymerase-primase and T antigen may play a role in the initiating of SV40 DNA replication.  相似文献   

13.
14.
Influenza A virus is one of the major pathogens that pose a large threat to human health worldwide and has caused pandemics.Influenza A virus is the Orthomyxoviridae prototype,and has 8 segmented negat...  相似文献   

15.
Hepatitis B virus (HBV) infection is a major cause of acute and chronic liver diseases. During the HBV life cycle, HBV hijacks various host factors to assist viral replication. In this research, we find that the HBV regulatory protein X (HBx) can induce the upregulation of DExH‐box RNA helicase 9 (DHX9) expression by repressing proteasome‐dependent degradation mediated by MDM2. Furthermore, we demonstrate that DHX9 contributes to viral DNA replication in dependence on its helicase activity and nuclear localization. In addition, the promotion of viral DNA replication by DHX9 is dependent on its interaction with Nup98. Our findings reveal that HBx‐mediated DHX9 upregulation is essential for HBV DNA replication.  相似文献   

16.
The elicitation of large amount inflammatory cytokine in serum has been developed as the cause of the plasma leakage in dengue fever (DF)/dengue haemorrhagic fever (DHF) infection. Virus recognition in innate immunity is the key. The Toll-like receptors (TLRs) play an important role in pathogen recognition towards cytokine induction among several viruses; however, the role of TLRs on innate immune recognition against DENV remains unclear. This study aims at the interaction between dengue virus (DENV) and human TLRs at the incipient stage of infection in vitro . Our experiment reveals that stably expression of TLR3, 7, 8 on HEK293 enables IL-8 secretion after DENV recognition. By the model of human monocytic cells U937, we demonstrated the trigger of IL-8 after viral recognition of human monocytic cell is primary through TLR3 following endosomal acidification. Silencing of TLR3 in U937 cells significantly blocks the DENV-induced IL-8 production. Besides, the interaction is further corroborated by colocalization of TLR3 and DENV RNA upon DENV internalization. Furthermore, in this study we found the expression of TLR3 can mediate strong IFN-α/β release and inhibit DENV viral replication significantly, thus limit the cytopathic effect.  相似文献   

17.
The simian virus 40 (SV40) large-T antigen is essential for SV40 DNA replication and for late viral gene expression, but the role of the SV40 small-t antigen in these processes is still unclear. We have previously demonstrated that small t inhibits SV40 DNA replication in vitro. In this study, we investigated the effect of small t on SV40 replication in cultured cells. CV1 monkey cell infection experiments indicated that mutant viruses that lack small t replicate less efficiently than the wild-type virus. We next microinjected CV1 cells with SV40 DNA with and without purified small-t protein and analyzed viral DNA replication efficiency by Southern blotting. Replication of either wild-type SV40 or small-t deletion mutant DNA was increased three- to fivefold in cells coinjected with purified small t. Thus, in contrast to our in vitro observation, small t stimulated viral DNA replication in vivo. This result suggests that small t has cellular effects that are not detectable in a reconstituted in vitro replication system. We also found that small t stimulated progression of permissive monkey cells--but not of nonpermissive rodent cells--from G0-G1 to the S phase of the cell cycle, possibly leading to an optimal intracellular environment for viral replication.  相似文献   

18.
The terminal half of the 5' untranslated region (UTR) in the (+)-strand RNA genome of tomato bushy stunt virus was analyzed for possible roles in viral RNA replication. Computer-aided thermodynamic analysis of secondary structure, phylogenetic comparisons for base-pair covariation, and chemical and enzymatic solution structure probing were used to analyze the 78 nucleotide long 5'-terminal sequence. The results indicate that this sequence adopts a branched secondary structure containing a three-helix junction core. The T-shaped domain (TSD) formed by this terminal sequence is closed by a prominent ten base-pair long helix, termed stem 1 (S1). Deletion of either the 5' or 3' segment forming S1 (coordinates 1-10 or 69-78, respectively) in a model subviral RNA replicon, i.e. a prototypical defective interfering (DI) RNA, reduced in vivo accumulation levels of this molecule approximately 20-fold. Compensatory-type mutational analysis of S1 within this replicon revealed a strong correlation between formation of the predicted S1 structure and efficient DI RNA accumulation. RNA decay studies in vivo did not reveal any notable changes in the physical stabilities of DI RNAs containing disrupted S1s, thus implicating RNA replication as the affected process. Further investigation revealed that destabilization of S1 in the (+)-strand was significantly more detrimental to DI RNA accumulation than (-)-strand destabilization, therefore S1-mediated activity likely functions primarily via the (+)-strand. The essential role of S1 in DI RNA accumulation prompted us to examine the 5'-proximal secondary structure of a previously identified mutant DI RNA, RNA B, that lacks the 5' UTR but is still capable of low levels of replication. Mutational analysis of a predicted S1-like element present within a cryptic 5'-terminal TSD confirmed the importance of the former in RNA B accumulation. Collectively, these data support a fundamental role for the TSD, and in particular its S1 subelement, in tombusvirus RNA replication.  相似文献   

19.
JC polyomavirus (JCPyV) is the causative agent of the demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML), which occurs in immunocompromised patients. Moreover, patients treated with natalizumab for multiple sclerosis or Crohn disease can develop PML, which is then termed natalizumab‐related PML. Because few drugs are currently available for treating PML, many antiviral agents are being investigated. It has been demonstrated that the topoisomerase I inhibitors topotecan and β‐lapachone have inhibitory effects on JCPyV replication in IMR‐32 cells. However, both of these drugs have marginal inhibitory effects on virus propagation in JC1 cells according to RT‐PCR analysis. In the present study, the inhibitory effect of another topoisomerase I inhibitor, 7‐ethy‐10‐[4‐(1‐piperidino)‐1‐piperidino] carbonyloxy camptothecin (CPT11), was assessed by investigating viral replication, propagation, and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using real‐time PCR combined with Dpn I treatment in IMR‐32 cells transfected with JCPyV DNA. It was found that JCPyV replicates less in IMR‐32 cells treated with CPT11 than in untreated cells. Moreover, CPT11 treatment of JCI cells persistently infected with JCPyV led to a dose‐dependent reduction in JCPyV DNA and VP1 production. Additionally, the inhibitory effect of CPT11 was found to be stronger than those of topotecan and β‐lapachone. These findings suggest that CPT11 may be a potential anti‐JCPyV agent that could be used to treat PML.
  相似文献   

20.
The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5' end of the DNA, releasing a 3' DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号