首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
<正>1煤化工1)在煤炭清洁转化方向,将重点开展低变质煤直接转化反应和催化基础研究,开发煤热解气化分质转化制清洁燃气关键技术,以及煤转化废水处理、回用和资源化关键技术;2)在燃煤污染控制方向,将重点开发燃煤PM2.5及Hg控制技术,开展燃煤污染物(SO_2,NO_x,PM)一体化控制技术工程示范,在深度脱除SO_2的同时,提高PM2.5的捕集效率;3)在CO_2捕集利用与封存方向,重点探索CO_2高效转化制备液体燃料与化学品的新工艺、新方法,开展CO_2烟气微藻减排技术研究,建立微藻年固碳能力万吨级的工程示范。  相似文献   

2.
煤转化国家重点实验室以煤高效洁净利用与转化为优质燃料、化学品和材料过程中的科学和技术基础为主要研究方向,重点研究煤的热物理化学、煤基液体燃料合成、煤炭利用过程中的污染物排放控制、相关产品加工新工艺和新技术、  相似文献   

3.
微藻水热液化制取生物油的研究进展   总被引:1,自引:0,他引:1  
微藻生产成本低,酯类和甘油含量较高,是制备液体燃料的理想原料。水热液化由于可直接处理湿藻并在适当的温度和压力下将其转化为高品质的石油替代产品而引起了广泛关注。本文探讨了微藻三组分,即蛋白质、脂质和碳水化合物的水热降解途径,并总结了目前微藻水热液化过程的主要影响因素,包括温度、停留时间、溶剂以及催化剂等反应条件或参数对生物油的影响。指出为提高微藻生物油的经济性,应进一步优化反应条件,降低催化剂成本,加强微藻水热定向液化技术的研究,富集液体产品中高附加值成分,实现高附加值化学品的综合利用,尽快实现微藻生物油的应用。  相似文献   

4.
煤转化国家重点实验室以煤高效洁净利用与转化为优质燃料、化学品和材料过程中的科学和技术基础为主要研究方向,重点研究煤的热物理化学、煤基液体燃料合成、煤炭利用过程中的污染物排放控制、相关产品加工新工艺和新技术、能源环境新材料制备等领域的核心科学问题和工程技术问题。  相似文献   

5.
《化工学报》2008,59(10)
煤转化国家重点实验室以煤高效洁净利用与转化为优质燃料、化学品和材料过程中的科学和技术基础为主要研究方向,重点研究煤的热物理化学、煤基液体燃料合成、煤炭利用过程中的污染物排放控制、相关产品加工新工艺和新技术、能源环境新材料制备等领域的核心科学问题和工程技术问题。  相似文献   

6.
《化工学报》2008,59(11):2856-2856,2909
煤转化国家重点实验室以煤高效洁净利用与转化为优质燃料、化学品和材料过程中的科学和技术基础为主要研究方向,重点研究煤的热物理化学、煤基液体燃料合成、煤炭利用过程中的污染物排放控制、相关产品加工新工艺和新技术、能源环境新材料制备等领域的核心科学问题和工程技术问题。  相似文献   

7.
合成气直接转化生产高附加值化学品以及液体燃料对于提高碳资源的利用效率具有重大意义.近年来,通过金属/金属氧化物与分子筛耦合构建的接力催化剂在合成气的转化研究取得一些成果.通过金属/金属氧化物将合成气转化为甲醇(二甲醚)/烯酮中间体,甲醇(二甲醚)/烯酮中间体进一步在分子筛中反应生成目标产物,通过对两步反应的活性中心进行...  相似文献   

8.
《化工学报》2009,60(11)
煤转化国家重点实验室以煤高效洁净利用与转化为优质燃料、化学品和材料过程中的科学和技术基础为主要研究方向,重点研究煤的热物理化学、煤基液体燃料合成、煤炭利用过程中的污染物排放控制、相关产品加工新工艺和新技术、能源环境新材料制备等领域的核心科学问题和工程技术问题.  相似文献   

9.
微波热解是一种高效的生物质转化利用技术,具有独特的热效应和非热效应,可将生物质转化为液体燃料和化学品,能有效缓解能源压力,减少环境污染。本文着重探讨了生物质原料特性、微波吸收剂、催化剂对生物质微波热解制备高品质液体燃料和化学品的影响。原料特性的影响主要从生物质的水分含量、灰分含量和有效氢碳比三方面展开论述,催化剂包括金属盐、金属氧化物、ZSM-5、微波驱动型催化剂以及其他一些催化剂,如HY、MCM-41和碳基催化剂等。简述了生物质的微波热解特性、液体燃料的组成以及转化机理,并对现存的热解机理复杂、产物复杂不稳定、目标产物选择性差、催化剂易结焦失活、重复性差等问题进行了分析,展望了未来的发展方向,以期为生物质的高效转化利用提供依据。  相似文献   

10.
《化工学报》2012,(11):3687+3715
煤转化国家重点实验室以煤高效洁净转化为优质燃料、化学品和材料过程中的科学和技术基础为主要研究方向,重点研究煤的热物理化学、煤基液体燃料合成、煤炭利用过程中的污染物排放控制、相关产品加工新工艺和新技术、能源环境新材料制备等领域的核心科学问题和工程技术问题,并通过基础研究与技术开发的紧密结合和集成创新,为我国煤炭高效洁净利用提供核心技术和解决方案。  相似文献   

11.
年轻煤固体热载体低温干馏   总被引:16,自引:2,他引:14  
郭树才 《煤炭转化》1998,21(3):51-54
在热的粉焦为热载体的10kg/h装置上进行了三种褐煤和神府煤的干馏实验,获得了质量的煤气,焦油和半焦产品,该产品洁净能源和化工原料,简介了150t/d平庄工业试验装置,讨论了此技术用于循环发电等的可能性,实验结果表明,新法干馏的条件温和,投资省,是有竞争力的技术。  相似文献   

12.
为改善低阶煤煤质、提高其利用经济性和安全性,阐述了国内外主流的低阶煤粉煤热解提质技术的工艺特点及研究进展,分析了低阶煤粉煤热解提质技术存在的问题,并对低阶煤粉煤热解提质工艺的发展进行了展望。结果表明:粉煤热解一般采用固体热载体热解工艺,具有加热速度快、焦油产量高、热解煤气热值高等优点,是解决大量粉煤利用的关键技术之一。针对粉煤热解工艺存在的关键技术未实现突破、经济效益差、焦油品质难以有效控制、废水处理难度大等问题,提出未来应从实现热解关键技术突破、优选热解反应器、开发热解产品深加工技术、研发可提高焦油产率和改善焦油品质的新工艺、开发新型焦油分离和回收技术、开发含有机物废水的处理方法、开发具有高能源转化效率的多联产工艺等7方面进行粉煤热解提质技术的研究。  相似文献   

13.
Biological conversion of coal and coal-derived synthesis gas   总被引:4,自引:0,他引:4  
Recent research has resulted in a number of promising biological pathways to produce clean fuels from coal. These processes all involve two or more steps: either the biosolubilization of coal, followed by bioconversion to ethanol or methane; or conversion of coal to synthesis gas, followed by bioconversion into alcohols or methane. Sulfur may also be removed from the solubilized coal or synthesis gas in a separate, or concurrent, biological step. This paper presents research results from both the direct and indirect conversion of coal to liquid fuels using biological processes. A review of direct conversion techniques in producing liquid fuels from coal in a serial conversion process is presented. In addition, bioreactor design data for the conversion of CO, CO2 and H2 in synthesis gas by Clostridium ljungdahlii in both batch and continuous culture are reviewed and discussed.  相似文献   

14.
The combined catalytic reactions using different types of petroleum residuum and coal were performed at 425°C and 60 minutes in the presence of hydrogen to upgrade both materials to high quality synthetic fuels. In order to improve this coprocessing technology, the effect of the chemical and physical properties of both materials on the coprocessing product yields was investigated through a parametric study. In all reaction combinations, substantial increase in maltene production and high coal conversions of over 84% were observed regardless of petroleum residuum type and coal rank. The petroleum residuum properties of specific gravity and conradson carbon residue had effects on asphaltene production and coal conversion. The results of quantitative analysis for the amount of coal upgraded during coprocessing lead to conclude thata large amount of coal converted to maltene fraction due to high catalytic activity and reactive hydrogen donor richness of coprocessing system. However, most of the heavier fractions were formed primarily from coal regardless of the type of residuum used.  相似文献   

15.
The potential offered by biomass and solid wastes for solving some of the world's energy problems is widely recognised. The energy in biomass may be realised either by direct use as in combustion, or by upgrading into a more valuable and usable fuel such as fuel gas, fuel oil, transport fuel or higher value products for the chemical industry. This paper is concerned with conversion and upgrading by pyrolysis and briefly describes the technologies of fast pyrolysis with particular reference to the use of catalysts in chemicals production and the use of catalytic processes in upgrading the primary pyrolysis products to higher quality and higher value fuels and chemicals. There are natural catalysts in biomass which substantially influence the production of high yielding chemicals. Removal or reinforcement of these catalysts has a dramatic effect on product yield and composition. The pyrolysis vapours can be catalytically cracked over zeolites to give aromatics and other hydrocarbon products which can be further converted into gasoline and diesel and the condensed liquid can be hydrotreated to a naphtha like product also for upgrading into transport fuels. There is, however, considerable uncertainty over the ability of the upgrading technology to be scaled up to commercial feasibility most notably in terms of catalyst performance and life. Considerably more research and development is needed to develop and prove suitable catalyst systems. There is also considerable uncertainty over the cost of upgrading in terms of capital costs, operating costs and performance and some preliminary estimates are included.  相似文献   

16.
李鹏  刘全润  方小可  李海鹏 《化工进展》2016,35(Z1):130-134
煤炭是我国的主要能源,煤的清洁高效利用是我国能源安全和生态环境建设的重要保障。热解是在温和条件下将煤转化为洁净的气体、液体和固体燃料,是改善煤炭利用、加工转化成清洁高效的二次能源的重要手段之一。微波作为一种新的加热方式在煤的热解方面的应用的优势越来越明显。本文概述了微波热解的机理与优点、微波吸收剂的应用以及国内外微波热解研究进展,得出了低阶煤介电常数较小,需要添加一定量的微波吸收剂才能达到热解温度;和常规热解相比,微波热解改变了物质的加热方式,改善了热解产物的品质,热解气中CO、H2含量增加,焦油品质较好,提高了煤的热解效率。作为一种新型加热方式,微波技术为煤热解效率的提高提供了新的解决方案和思路。  相似文献   

17.
张天开  张永发  丁晓阔  张静 《化工进展》2015,34(2):349-359,369
天然气资源短缺、低阶煤资源利用问题突出,开发新型、高效和对环境友好的低阶煤制甲烷工艺成为研究热点。本文分析讨论了以下几方面:温度、压力、催化剂、煤种和气化剂等因素对煤直接加氢制甲烷过程的影响;煤直接加氢制甲烷的反应机理和动力学;3种典型煤直接加氢甲烷化工艺的优缺点;本文作者课题组正在研究开发的低阶煤炭化脱氧、高活性半焦直接加氢制甲烷工艺及其特点。分析认为:以低阶煤(生物质)为原料进行加氢甲烷化生产代用天然气成为新的研究重点,其中又以新型、廉价煤加氢甲烷化催化剂的研制和新型甲烷化反应器的开发最为关键。  相似文献   

18.
煤热解是一种重要的煤炭分质利用技术,中低温热解焦油是制取液体燃料和化学品的重要原料。本文从对煤进行预处理、改变热解气氛、催化热解与催化加氢热解、煤与其它物质共热解、新型耦合热解工艺等方面综述了煤热解制焦油的工艺研究进展,探讨了影响煤热解过程焦油产率的因素及机理,并对各工艺进行了评价。  相似文献   

19.
Continuously increasing oil prices, a dwindling supply of indigenous petroleum, and the existence of extensive coal reserves has made the conversion of coal to chemicals and clean-burning fuels an increasingly important part of the national energy programs for a number of industrial nations. In particular, there is a growing interest in the production and use of synthesis gas as a feedstock for the manufacture of fuels and chemicals. Most of the proposed routes are catalytic in nature, and are directed at overcoming the limitations of Fischer-Tropsch chemistry, especially selectivity. Over the past several years, research efforts have led to new selective routes to various fuel fractions; to petrochemical feedstocks including light olefins and various aromatics; to commodity chemicals such as ethylene glycol, ethanol, and acetic acid; and to a number of other fuels and chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号