首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).  相似文献   

2.
Plasmonic gold nanoparticles (AuNP) with controllable dimensions have been fabricated in situ on graphene at moderately elevated temperature for high sensitivity surface enhanced Raman spectroscopy (SERS) of Rhodamine 6G (R6G) dye molecules. Significantly enhanced Raman signature of R6G dyes were observed on AuNP/graphene substrates as compared to the case without graphene with an improvement factor of 400%, which is remarkably greater than previous results obtained in ex situ fabricated SERS substrate. Simulation of localized electromagnetic field around AuNPs with and without the underneath graphene layer reveals an enhanced local electromagnetic field due to the plasmonic effect of AuNPs, while additional Ohmic loss occurs when graphene is present. The enhanced local electromagnetic field by plasmonic AuNPs is unlikely the dominant factor contributing to the observed high SERS sensitivity on R6G/AuNP/graphene substrate. Instead, the p-doped graphene, which is supported by the large positive Dirac point shift away from “zero” observed in AuNP/graphene field effect transistors, promotes SERS signals through enhanced molecule adsorption and non-resonance molecular–substrate chemical interaction.  相似文献   

3.
The authors study plasmonic enhancements of photoluminescence (PL) in Si nanodisk (ND) arrays hybridized with nanostructures such as nanoplates of Au, where these hybrid nanostructures are fabricated by fully top-down lithography: neutral-beam etching using bio-nano-templates and high-resolution electron-beam lithography. The separation distance between the Si ND and Au nanostructure surfaces is precisely controlled by inserting a thin SiO2 layer with a thickness of 3 nm. We observe that PL intensities in the Si NDs are enhanced by factors up to 5 depending on the wavelength by integrating with the Au nanoplates. These enhancements also depend on the size and shape of the Au nanoplates.  相似文献   

4.
A new hybrid electrochemical capacitor based on an activated carbon negative electrode, lead dioxide thin film and nanowire array positive electrode with an electrolyte made of a lead salt dissolved in methanesulfonic acid was investigated. It is shown that the maximum energy density and specific capacity of the C/PbO2 nanowire system increase during the first 50 cycles before reaching their maximum values, which are 29 Wh kg−1 and 34 F g−1, respectively, at a current density of 10 mA cm−2 and a depth of discharge (positive active electrode material) of 3.8%, that corresponds to a 22C rate. This is 7–8 times higher than the corresponding maximum values reached with a C/PbO2 thin film cell operated in the same conditions. After an initial activation period, the performances of the C/PbO2 nanowire system stay constant and do not show any sign of degradation during more than 5000 cycles. For comparison, the C/PbO2 thin film system exhibits a 50% decrease of its performances in similar conditions.  相似文献   

5.
In this paper, nanowire network anodized aluminum oxide (AAO) was fabricated by just adding a simple film-eroding process after the production of porous AAO. After depositing 50 nm of Au onto the surface, nanowire network AAO can be used as ultrasensitive and high reproducibility surface-enhanced Raman scattering (SERS) substrate. The average Raman enhancement factor of the nanowire network AAO SERS substrate can reach 5.93 × 106, which is about 14% larger than that of commercial Klarite® substrates. Simultaneously, the relative standard deviations in the SERS intensities are limited to approximately 7%. All of the results indicate that our large-area low-cost high-performance nanowire structure AAO SERS substrates have a great advantage in chemical/biological sensing applications.  相似文献   

6.
An asymmetric hybrid plasmonic metal-wire waveguide is proposed by combining the advantages of symmetric and hybrid plasmonic modes. The idea of asymmetric structure eliminates the adverse effect of a substrate and enhances the optical performance of the waveguide. The guiding properties of the proposed waveguide are intensively investigated using the finite elements method. The results exhibit a quite long propagation length of 2.69 cm with subwavelength confinement. More importantly, an extremely large figure of merit of 139037 is achieved. Furthermore, the proposed waveguides can be used as directional couplers. They can achieve a coupling length of only 1.01 μm at S = 0.1 μm with negligible loss. A strong dependence of coupling length on the operating wavelength makes the proposed waveguide promising for realizing wavelength-selective components at telecommunication wavelengths.  相似文献   

7.
Nanowire TiO2 thin films were successfully prepared on Ti metal substrates by hydrothermal treatment of calcined Ti foils in 10 M NaOH. The nanowire TiO2 thin films exhibited much larger surface area and higher photoelectrochemical performance than the TiO2 thin films prepared on Ti metal substrates by the calcination of Ti foil. These nanowire films were shown to act as an efficient photoanodes for the photoelectrochemical water splitting reaction.  相似文献   

8.
《Ceramics International》2016,42(14):15338-15342
2 at% Manganese-doped Na0.5Bi0.5TiO3 (NBTMn) thin films with single-layer thicknesses ranging from 15 to 45 nm/l were deposited on the indium tin oxide/glass substrates by a metal organic decomposition process and spin coating technique. The influence of single-layer thickness on the crystal structure, surface morphology, insulating ability, ferroelectric and dielectric properties was mainly investigated. Compared with the other films, NBTMn film with a single-layer thickness of 30 nm/l exhibits the (110)-preferred orientation and dense structure. Also, it shows the enhanced ferroelectricity with a large remanent polarization (Pr) of 38 μC/cm2 due to the preferred orientation and low leakage current density. Meanwhile, a high dielectric tunability of 39% for NBTMn with 30 nm/l can be observed by varying the measuring applied voltage and frequency. These results indicate that the suitable layer thickness is beneficial to improve the electrical performances of NBTMn thin film.  相似文献   

9.
In this study, the influence of the geometric parameters on the optical absorption of gallium arsenide [GaAs] nanowire arrays [NWAs] has been systematically analyzed using finite-difference time-domain simulations. The calculations reveal that the optical absorption is sensitive to the geometric parameters such as diameter [D], length [L], and filling ratio [D/P], and more efficient light absorption can be obtained in GaAs NWAs than in thin films with the same thickness due to the combined effects of intrinsic antireflection and efficient excitation of resonant modes. Optimized geometric parameters are obtained as follows: D = 180 nm, L = 2 μm, and D/P = 0.5. Meanwhile, the simulation on the absorption of GaAs NWAs for oblique incidence has also been carried out. The underlying physics is discussed in this work.PACS: 81.07.Gf nanowires; 81.05.Ea III-V semiconductors; 88.40.hj efficiency and performance of solar cells; 73.50.Pz photoconduction and photovoltaic effects.  相似文献   

10.
Water-based inks, containing nanometric NiO and YSZ particles in 66/34 vol. % ratio, are produced by colloidal stabilization of a binary dispersion obtained via continuous hydrothermal synthesis at supercritical conditions, i.e. 280 bar and 400 °C. The method yields single-crystal particles with diameter ≤ 10 nm for both phases in a single-step process, achieving a highly mixed composite. Two different approaches are applied to formulate inks printable with piezoelectric printheads, i.e. an electrostatic and an electrosteric stabilization path. The use of an electrosteric dispersant results in colloids with superior stability > 200 days, more uniform thin films and finely nanostructured porous cermet films with thickness below 500 nm, after reducing NiO to Ni. Particles coarsening to 50–150 nm is obtained at 1000 °C, accompanied by a shrinkage of ca. 43% in thickness without the formation of cracks or delamination of the zirconia substrates.  相似文献   

11.
《Ceramics International》2020,46(2):1883-1887
Electric properties for ferroelectric lead zirconate titanate (PZT50/50, 45/55, 40/60, 30/70) thin films on base metal plates with different thermal expansion coefficient (TEC) were calculated by a phenomenological model. Results show that when the TEC of substrates increases, dielectric constant, tunability and piezoelectric coefficient d33 of all PZT thin films with tetragonal phase are decreased due to the larger compressive thermal strain. PZT50/50 thin films deposited on smaller TEC substrates can achieve higher dielectric constant, tunability and d33. The computed dielectric constant of PZT50/50 thin films is in accordance with the measured results from sol-gel experimental process, and the trend of dielectric constant of PZT films adjacent to morphotropic phase boundary (MPB) derived from some references also agrees with that from calculation. These results suggest that higher tunability and d33 of PZT films can be obtained by choosing smaller TEC substrates.  相似文献   

12.
Acoustic micrograph and V(z) curves of polystyrene thin films on hydrophobic modified and unmodified alumino silicate glass substrates were studied in the frequency range from 170 to 450 MHz by a scanning acoustic microscope. The bright and dark parts in the acoustic micrograph of the unmodified glass samples appeared owing to permeation of water into the film. The blister was observed after about 20 s from dropping water. Sizes of the blister depended on the time and the thickness of thin films. On the other hand, the acoustic micrograph of the hydrophobic modified samples was a uniform image and the peeling of the thin film was not observed. V(z) curves of polystyrene thin film on the modified glass substrates had two oscillation periods in a certain frequency range that depended on the thickness of thin films. The short cycle and the long cycle components were assigned to a leaky surface acoustic wave (LSAW) and a leaky pseudo Sezawa wave, respectively. Velocities of the LSAW decreased linearly with an increase in film thickness.  相似文献   

13.
We report the synthesis of amorphous (PbSe)100−xCdx (x = 5, 10, 15, and 20) nanoparticle thin films using thermal evaporation method under argon gas atmosphere. Thin films with a thickness of 20 nm have been deposited on glass substrates at room temperature under a continuous flow (50 sccm) of argon. X-ray diffraction patterns suggest the amorphous nature of these thin films. From the field emission scanning electron microscopy images, it is observed that these thin films contain quite spherical nanoparticles with an average diameter of approximately 20 nm. Raman spectra of these a-(PbSe)100−xCdx nanoparticles show a wavelength shift in the peak position as compared with earlier reported values on PbSe. This shift in peak position may be due to the addition of Cd in PbSe. The optical properties of these nanoparticles include the studies on photoluminescence and optical constants. On the basis of optical absorption measurements, a direct optical bandgap is observed, and the value of the bandgap decreases with the increase in metal (Cd) contents in PbSe. Both extinction coefficient (k) and refractive index (n) show an increasing trend with the increase in Cd concentration. On the basis of temperature dependence of direct current conductivity, the activation energy and pre-exponential factor of these thin films have been estimated. These calculated values of activation energy and pre-exponential factor suggest that the conduction is due to thermally assisted tunneling of the carriers.  相似文献   

14.
Silver nanowire-based transparent,flexible, and conductive thin film   总被引:1,自引:0,他引:1  
The fabrication of transparent, conductive, and uniform silver nanowire films using the scalable rod-coating technique is described in this study. Properties of the transparent conductive thin films are investigated, as well as the approaches to improve the performance of transparent silver nanowire electrodes. It is found that silver nanowires are oxidized during the coating process. Incubation in hydrogen chloride (HCl) vapor can eliminate oxidized surface, and consequently, reduce largely the resistivity of silver nanowire thin films. After HCl treatment, 175 Ω/sq and approximately 75% transmittance are achieved. The sheet resistivity drops remarkably with the rise of the film thickness or with the decrease of transparency. The thin film electrodes also demonstrated excellent flexible stability, showing < 2% resistance change after over 100 bending cycles.  相似文献   

15.
J.P.F InbergR.J Gaymans 《Polymer》2002,43(13):3767-3777
The influence of specimen thickness on the fracture behaviour of polycarbonate (PC) and co-continuous PC/ABS (50/50) blends was studied in single edge notch tensile tests at 1 m/s and different temperatures (−80 to 130 °C). Specimen thickness ranged from 0.1 to 8 mm. In the co-continuous PC/ABS blends the rubber concentration in the ABS was 0, 15 and 30 wt%. The change in fracture toughness was typified by the change in brittle-to-ductile transition temperature (Tbd).Tbd of pure PC depended strongly on specimen thickness, leading to very low transition temperatures for thin PC specimens. PC/ABS 0%, a 50/50 blend of PC and SAN (i.e. ABS without polybutadiene (PB)), was a brittle blend and showed a very high Tbd close to the Tg of SAN. Tbd did not seem to be influenced by specimen thickness. PC/ABS blends with 15 and 30% PB in ABS showed improved Tbd compared to PC/SAN and PC, indicating effective rubber toughening. Tbd decreased with decreasing thickness for PC/ABS specimens thicker than 1.5 mm. However, Tbd increased with decreasing thickness for specimens below 1.5 mm thickness. In thin specimens, the rubber-filled blend is less effective rubber toughening. The plane strain stress condition needed for rubber cavitation is apparently not present in thin specimens.  相似文献   

16.
Yonghui Li  Jun Li 《Polymer》2011,52(11):2367-6055
Bionanocomposites from biopolymers and inorganic nanoparticles are of great interest for packaging materials due to their enhanced physical, thermal, mechanical, and processing characteristics. In this study, poly(lactic acid) (PLA) nanocomposites with covalent bonding between TiO2 nanowire surface and PLA chains were synthesized through in situ melt polycondensation. Molecular weight, structure, morphology, and thermal properties were characterized. Fourier transform infrared spectroscopy confirmed that PLA chains were covalently grafted onto TiO2 nanowire surface. Transmission electron microscopy images also revealed clearly a third phase presence on the nanowires after the grafting process. Those grafted PLA chains exhibited significantly increased glass transition temperature and thermal stability, compared with pure PLA. The weight-average molecular weight of PLA/2% TiO2 nanowire bulk nanocomposites increased by 66% compared with that of pure PLA. The electron microscopy results showed that strong interfacial interaction and homogeneous distribution were achieved between inorganic nanowires and organic PLA matrix in the bulk nanocomposites. The PLA matrix in bulk nanocomposites exhibited elevated glass transition temperature and decreased crystallization ability as the TiO2 nanowire concentrations were increased from 0 to 2%.  相似文献   

17.
Ba(Zr0.3Ti0.7)O3薄膜的结构及性能   总被引:1,自引:0,他引:1  
高成  翟继卫  姚熹 《硅酸盐学报》2006,34(8):946-950
用溶胶-凝胶法分别在Pt/Ti/SiO2/Si和LaNiO3/Pt/Ti/SiO2/Si衬底上制备了锆钛酸钡[Ba(Zr0.3Ti0.7)O3,BZT]薄膜.相结构及介电性能研究表明:衬底和薄膜厚度对BZT薄膜性能具有显著影响.制备在LaNiO3/Pt/Ti/SiO2/Si衬底上的BZT薄膜具有(100)面的择优取向,其介电常数及介电损耗则随着薄膜厚度的增加而降低.对制备在Pt/Ti/SiO2/Si衬底上的BZT薄膜,在薄膜厚度低于500nm时,其介电常数随薄膜厚度增加而增加,大于500nm时又有所减小.  相似文献   

18.
The sol–gel process allows to design hybrid organic–inorganic materials constituted by organic molecules or macromolecules and inorganic metal oxo-polymers interpenetrated at the nanometer scale. These hybrids were deposited as functional coatings with tunable thickness on float glass substrates. Good adhesion and mechanical behaviour of the coatings are required to keep their functionality in time hence; the performance of the PMMA-SiO2 based thin films was investigated using nanoindentation. This study validates nanoindentation measurements as an appropriate technique to characterize hybrid organic–inorganic thin films, despite visco-elastic behaviours. Specific analysis procedures and the use of appropriate models allowed us to determine the indentation modulus and hardness of the hybrid layers reproductively. The structure and the mechanical behaviour are reported for thin films as a function of the fraction of silica.  相似文献   

19.
《Ceramics International》2017,43(8):6096-6104
Tin oxide nanostructured arrays with different morphologies were grown on stainless-steel mesh substrates by a simple thermal evaporation process. It was found that the SnO2 nanostructures could be easily changed from nanobelts to nanocones, nanoneedles, micro-rods, ultra-long nanowires, and slim nanorods by controlling the parameters of growth temperature and N2/O2 flow. A model combining vapor-liquid-solid (VLS)-base growth and vapor-solid (VS)-tip growth was proposed to explain the growth of SnO2 nanostructures with manifold morphologies. Field-emission (FE) studies revealed that the morphologies of these patterned SnO2 nanostructures had considerable effects on the FE properties. Among these nanostructures, ultra-long nanowire arrays had the lowest turn-on field (~0.47 V/um) and the highest field enhancement factor (~8848). More importantly, the ultra-long nanowire emitters showed excellent FE stability with fluctuations within 2.7%. The enhanced FE properties may be attributed to synergic effects arising from the aligned structures of the ultra-long nanowire emitters, their smaller areal density and their highest aspect ratio (~12000).  相似文献   

20.
《Ceramics International》2016,42(6):6701-6706
Undoped and Al-doped ZnO (AZO) thin films (Al: 3, 5 at%) using a series of high quality ceramic targets have been deposited at 450 ºC onto glass substrates using PLD method. The used source was a KrF excimer laser (248 nm, 25 ns, 2 J/cm2). The study of the obtained thin films has been accomplished using X-ray diffraction (XRD), M-lines spectroscopy and Rutherford backscattering spectroscopy (RBS). XRD patterns have shown that the films crystallize in a hexagonal wurtzite type structure with a highly c-axis preferred (002) orientation, and the grain sizes decrease from 37 to 25 nm with increasing Al doping. The optical waveguiding properties of the films were characterized by means of the prism-coupling method. The distinct M-lines of the guided transverse magnetic (TM) and transverse electric (TE) modes of the ZnO films waveguide have been observed. The M-lines device has allowed determination of the accurate values of refractive index and thickness of the studied ZnO and AZO thin films. An evaluation of experimental uncertainty and calculation of the precision of the refractive index and thickness were developed on ZnO films. The RBS results agree with XRD and m-lines spectroscopy measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号