首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We previously showed that plasma membrane Ca2+-ATPase (PMCA) activity accounted for 25–30% of relaxation in bladder smooth muscle (8). Among the four PMCA isoforms only PMCA1 and PMCA4 are expressed in smooth muscle. To address the role of these isoforms, we measured cytosolic Ca2+ ([Ca2+]i) using fura-PE3 and simultaneously measured contractility in bladder smooth muscle from wild-type (WT), Pmca1+/–, Pmca4+/–, Pmca4–/–, and Pmca1+/–Pmca4–/– mice. There were no differences in basal [Ca2+]i values between bladder preparations. KCl (80 mM) elicited both larger forces (150–190%) and increases in [Ca2+]i (130–180%) in smooth muscle from Pmca1+/– and Pmca1+/–Pmca4–/– bladders than those in WT or Pmca4–/–. The responses to carbachol (CCh: 10 µM) were also greater in Pmca1+/– (120–150%) than in WT bladders. In contrast, the responses in Pmca4–/– and Pmca1+/–Pmca4–/– bladders to CCh were significantly smaller (40–50%) than WT. The rise in half-times of force and [Ca2+]i increases in response to KCl and CCh, and the concomitant half-times of their decrease upon washout of agonist were prolonged in Pmca4–/– (130–190%) and Pmca1+/–Pmca4–/– (120–250%) bladders, but not in Pmca1+/– bladders with respect to WT. Our evidence indicates distinct isoform functions with the PMCA1 isoform involved in overall Ca2+ clearance, while PMCA4 is essential for the [Ca2+]i increase and contractile response to the CCh receptor-mediated signal transduction pathway. PMCA; bladder smooth muscle; gene-altered mice  相似文献   

2.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

3.
In epithelial cells, several intracellular signals regulate the secretion of large molecules such as mucin via exocytosis and the transport of ions through channels and transporters. Using carbon fiber amperometry, we previously reported that exocytosis of secretory granules in dog pancreatic duct epithelial cells (PDEC) can be stimulated by pharmacological activation of cAMP-dependent protein kinase (PKA) or protein kinase C (PKC), as well as by an increase of intracellular free Ca2+ concentration ([Ca2+]i). In this study, we examined whether exocytosis in these cells is modulated by activation of endogenous P2Y receptors, which increase cAMP and [Ca2+]i. Low concentrations of ATP (<10 µM) induced intracellular Ca2+ oscillation but no significant exocytosis. In contrast, 100 µM ATP induced a sustained [Ca2+]i rise and increased the exocytosis rate sevenfold. The contribution of Ca2+ or cAMP pathways to exocytosis was tested by using the Ca2+ chelator BAPTA or the PKA inhibitors H-89 or Rp-8-bromoadenosine 3',5'-cyclic monophosphorothioate. Removal of [Ca2+]i rise or inhibition of PKA each partially reduced exocytosis; when combined, they abolished exocytosis. In conclusion, ATP at concentrations >10 µM stimulates exocytosis from PDEC through both Ca2+ and cAMP pathways. secretion; amperometry; photometry; calcium, adenosine 3',5'-cyclic monophosphate  相似文献   

4.
Ethanol strongly augments secretin-stimulated, but not acetylcholine (ACh)-stimulated, fluid secretion from pancreatic duct cells. To understand its mechanism of action, we examined the effect of short-chain n-alcohols on fluid secretion and intracellular Ca2+ concentration ([Ca2+]i) in guinea pig pancreatic ducts. Fluid secretion was measured by monitoring the luminal volume of isolated interlobular ducts. [Ca2+]i was estimated using fura-2 microfluorometry. Methanol and ethanol at 0.3–10 mM concentrations significantly augmented fluid secretion and induced a transient elevation of [Ca2+]i in secretin- or dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP)-stimulated ducts. However, they failed to affect fluid secretion and [Ca2+]i in unstimulated and ACh-stimulated ducts. In contrast, propanol and butanol at 0.3–10 mM concentrations significantly reduced fluid secretion and decreased [Ca2+]i in unstimulated ducts and in ducts stimulated with secretin, DBcAMP, or ACh. Both stimulatory and inhibitory effects of n-alcohols completely disappeared after their removal from the perfusate. Propanol and butanol inhibited the plateau phase, but not the initial peak, of [Ca2+]i response to ACh as well as the [Ca2+]i elevation induced by thapsigargin, suggesting that they inhibit Ca2+ influx. Removal of extracellular Ca2+ reduced [Ca2+]i in duct cells and completely abolished secretin-stimulated fluid secretion. In conclusion, there is a distinct cutoff point between ethanol (C2) and propanol (C3) in their effects on fluid secretion and [Ca2+]i in duct cells. Short-chain n-alcohols appear to affect pancreatic ductal fluid secretion by activating or inhibiting the plasma membrane Ca2+ channel. intracellular calcium; acetylcholine  相似文献   

5.
The regulationof intracellular Ca2+ signals in smooth muscle cells andarterial diameter by intravascular pressure was investigated in ratcerebral arteries (~150 µm) using a laser scanning confocal microscope and the fluorescent Ca2+ indicator fluo 3. Elevation of pressure from 10 to 60 mmHg increased Ca2+spark frequency 2.6-fold, Ca2+ wave frequency 1.9-fold, andglobal intracellular Ca2+ concentration([Ca2+]i) 1.4-fold in smooth muscle cells,and constricted arteries. Ryanodine (10 µM), an inhibitor ofryanodine-sensitive Ca2+ release channels, or thapsigargin(100 nM), an inhibitor of the sarcoplasmic reticulumCa2+-ATPase, abolished sparks and waves, elevated global[Ca2+]i, and constricted pressurized (60 mmHg) arteries. Diltiazem (25 µM), a voltage-dependentCa2+ channel (VDCC) blocker, significantly reduced sparks,waves, and global [Ca2+]i, and dilatedpressurized (60 mmHg) arteries. Steady membrane depolarization elevatedCa2+ signaling similar to pressure and increased transientCa2+-sensitive K+ channel current frequencye-fold for ~7 mV, and these effects were prevented by VDCCblockers. Data are consistent with the hypothesis that pressure inducesa steady membrane depolarization that activates VDCCs, leading to anelevation of spark frequency, wave frequency, and global[Ca2+]i. In addition, pressure inducescontraction via an elevation of global[Ca2+]i, whereas the net effect of sparks andwaves, which do not significantly contribute to global[Ca2+]i in arteries pressurized to between 10 and 60 mmHg, is to oppose contraction.

  相似文献   

6.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

7.
Decoding of fast cytosolic Ca2+ concentration ([Ca2+]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca2+] ([Ca2+]m) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca2+] ([Ca2+]em) to >0.5 µM resulted in a [Ca2+]em-dependent increase in the rate of mitochondrial Ca2+ accumulation ([Ca2+]em resulting in half-maximal rate of Ca2+ accumulation = 4.4 µM) via Ca2+ uniporter. Ca2+ uptake was sensitive to the Ca2+ uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca2+]m increase and recovery were dependent on the extramitochondrial [Na+] ([Na+]em) due to Ca2+ extrusion via mitochondrial Na+/Ca2+ exchanger. The maximal rate of Ca2+ extrusion was observed with [Na+]em in the range of 20–40 mM. Rapid switching (0.25–1 Hz) of [Ca2+]em between 0 and 100 µM simulated rapid beat-to-beat changes in [Ca2+]i (with [Ca2+]i transient duration of 100–500 ms). No [Ca2+]m oscillations were observed, either under conditions of maximal rate of Ca2+ uptake (100 µM [Ca2+]em, 0 [Na+]em) or with maximal rate of Ca2+ removal (0 [Ca2+]em, 40 mM [Na+]em). The slow frequency-dependent increase of [Ca2+]m argues against a rapid transmission of Ca2+ signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca2+]m changes elicited by continuous or pulsatile exposure to elevated [Ca2+]em showed no difference in mitochondrial Ca2+ uptake. Thus in cardiac myocytes fast [Ca2+]i transients are integrated by mitochondrial Ca2+ transport systems, resulting in a frequency-dependent net mitochondrial Ca2+ accumulation. mitochondrial Ca2+; excitation-contraction coupling; cardiomyocytes  相似文献   

8.
ATP induces dephosphorylation of myosin light chain in endothelial cells   总被引:1,自引:0,他引:1  
In cultured porcine aortic endothelial monolayers, theeffect of ATP on myosin light chain (MLC) phosphorylation, whichcontrols the endothelial contractile machinery, was studied. ATP (10 µM) reduced MLC phosphorylation but increased cytosolicCa2+ concentration ([Ca2+]i).Inhibition of the ATP-evoked [Ca2+]i rise byxestospongin C (10 µM), an inhibitor of the inositol trisphosphate-dependent Ca2+ release from endoplasmicreticulum, did not affect the ATP-induced dephosphorylation of MLC. MLCdephosphorylation was prevented in the presence of calyculin A (10 nM),an inhibitor of protein phosphatases PP-1 and PP-2A. Thus ATP activatesMLC dephosphorylation in a Ca2+-independent manner. In thepresence of calyculin A, MLC phosphorylation was incremented afteraddition of ATP, an effect that could be abolished when cellswere loaded with the Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester (10 µM). Thus ATP also activates aCa2+-dependent kinase acting on MLC. In summary, ATPsimultaneously stimulates a functional antagonism toward bothphosphorylation and dephosphorylation of MLC in which thedephosphorylation prevails. In endothelial cells, ATP is the firstphysiological mediator identified to activate MLC dephosphorylation bya Ca2+-independent mechanism.

  相似文献   

9.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

10.
Palytoxin-induced cell death cascade in bovine aortic endothelial cells   总被引:1,自引:0,他引:1  
The plasmalemmal Na+-K+-ATPase (NKA) pump is the receptor for the potent marine toxin palytoxin (PTX). PTX binds to the NKA and converts the pump into a monovalent cation channel that exhibits a slight permeability to Ca2+. However, the ability of PTX to directly increase cytosolic free Ca2+ concentration ([Ca2+]i) via Na+ pump channels and to initiate Ca2+ overload-induced oncotic cell death has not been examined. Thus the purpose of this study was to determine the effect of PTX on [Ca2+]i and the downstream events associated with cell death in bovine aortic endothelial cells. PTX (3–100 nM) produced a graded increase in [Ca2+]i that was dependent on extracellular Ca2+. The increase in [Ca2+]i initiated by 100 nM PTX was blocked by pretreatment with ouabain with an IC50 < 1 µM. The elevation in [Ca2+]i could be reversed by addition of ouabain at various times after PTX, but this required much higher concentrations of ouabain (0.5 mM). These results suggest that the PTX-induced rise in [Ca2+]i occurs via the Na+ pump. Subsequent to the rise in [Ca2+]i, PTX also caused a concentration-dependent increase in uptake of the vital dye ethidium bromide (EB) but not YO-PRO-1. EB uptake was also blocked by ouabain added either before or after PTX. Time-lapse video microscopy showed that PTX ultimately caused cell lysis as indicated by release of transiently expressed green fluorescent protein (molecular mass 27 kDa) and rapid uptake of propidium iodide. Cell lysis was 1) greatly delayed by removing extracellular Ca2+ or by adding ouabain after PTX, 2) blocked by the cytoprotective amino acid glycine, and 3) accompanied by dramatic membrane blebbing. These results demonstrate that PTX initiates a cell death cascade characteristic of Ca2+ overload. necrosis; vital dyes; membrane blebs; time-lapse video microscopy; fura-2  相似文献   

11.
Thenotion that intracellular Ca2+ (Cai2+)stores play a significant role in the chemoreception process inchemoreceptor cells of the carotid body (CB) appears in the literaturein a recurrent manner. However, the structural identity of theCa2+ stores and their real significance in the function ofchemoreceptor cells are unknown. To assess the functional significanceof Cai2+ stores in chemoreceptor cells, we havemonitored 1) the release of catecholamines (CA) from thecells using an in vitro preparation of intact rabbit CB and2) the intracellular Ca2+ concentration([Ca2+]i) using isolated chemoreceptor cells;both parameters were measured in the absence or the presence of agentsinterfering with the storage of Ca2+. We found thatthreshold [Ca2+]i for high extracellularK+ (Ke+) to elicit a release response is250 nM. Caffeine (10-40 mM), ryanodine (0.5 µM), thapsigargin(0.05-1 µM), and cyclopiazonic acid (10 µM) did not alter thebasal or the stimulus (hypoxia, high Ke+)-inducedrelease of CA. The same agents produced Cai2+transients of amplitude below secretory threshold; ryanodine (0.5 µM), thapsigargin (1 µM), and cyclopiazonic acid (10 µM) did notalter the magnitude or time course of the Cai2+responses elicited by high Ke+. Several potentialactivators of the phospholipase C system (bethanechol, ATP, andbradykinin), and thereby of inositol 1,4,5-trisphosphate receptors,produced minimal or no changes in [Ca2+]i anddid not affect the basal release of CA. It is concluded that, in therabbit CB chemoreceptor cells, Cai2+ stores do not playa significant role in the instant-to-instant chemoreception process.

  相似文献   

12.
µ-calpain and calpain-3 are Ca2+-dependent proteases found in skeletal muscle. Autolysis of calpains is observed using Western blot analysis as the cleaving of the full-length proteins to shorter products. Biochemical assays suggest that µ-calpain becomes proteolytically active in the presence of 2–200 µM Ca2+. Although calpain-3 is poorly understood, autolysis is thought to result in its activation, which is widely thought to occur at lower intracellular Ca2+ concentration levels ([Ca2+]i; 1 µM) than the levels at which µ-calpain activation occurs. We have demonstrated the Ca2+-dependent autolysis of the calpains in human muscle samples and rat extensor digitorum longus (EDL) muscles homogenized in solutions mimicking the intracellular environment at various [Ca2+] levels (0, 2.5, 10, and 25 µM). Autolysis of calpain-3 was found to occur across a [Ca2+] range similar to that for µ-calpain, and both calpains displayed a seemingly higher Ca2+ sensitivity in human than in rat muscle homogenates, with 15% autolysis observed after 1-min exposure to 2.5 µM Ca2+ in human muscle and almost none after 1- to 2-min exposure to the same [Ca2+]i level in rat muscle. During muscle activity, [Ca2+]i may transiently peak in the range found to autolyze µ-calpain and calpain-3, so we examined the effect of two types of exhaustive cycling exercise (30-s "all-out" cycling, n = 8; and 70% O2 peak until fatigue, n = 3) on the amount of autolyzed µ-calpain or calpain-3 in human muscle. No significant autolysis of µ-calpain or calpain-3 occurred as a result of the exercise. These findings have shown that the time- and concentration-dependent changes in [Ca2+]i that occurred during concentric exercise fall near but below the level necessary to cause autolysis of calpains in vivo. Ca2+-dependent proteases; proteolysis  相似文献   

13.
The mechanism of the Ca2+-dependent Cl efflux was studiedin tonoplast-free cells, in which the intracellular chemicalcomposition can be freely controlled. Tonoplast-free cells wereprepared by perfusing the cell interior of internodal cellsof Chara corallina with a medium that contained EGTA. The Ca2+-inducedCl efflux was measured together with the membrane potentialduring continuous intracellular perfusion. The dependenciesof Cl efflux and the membrane potential on the intracellularCa2+ or Cl concentrations were analyzed. When perfusionwas started with medium that contained Ca2+ ions, Clefflux and membrane depolarization were induced. The amountof Cl efflux varied considerably among individual cells.The rate of efflux decreased exponentially but a residual effluxremained detectable. The Cl efflux was induced at concentrationsof Ca2+ ions above 1 µM and reached a maximum at 1 mM.By contrast, the membrane depolarization reached a maximum atabout 10 µM Ca2+. The rate of Cl efflux increasedlinearly with logarithmic increases in the intracellular Clconcentrations. These findings suggest that more than two kindsof Ca2+-dependent Cl channel might be present in theplasma membrane. Addition of ATP or its removal from the perfusion medium didnot affect the Ca2+-dependent Cl efflux. Calmodulin antagonistsslightly inhibited the Ca2+-dependent Cl efflux. 1Present address: Biological Laboratory, Hitotsubashi University,Naka 2-1, Kunitachi, Tokyo, 186 Japan.  相似文献   

14.
We previously reported that human growth hormone (hGH) increases cytoplasmic Ca2+ concentration ([Ca2+]i) and proliferation in pancreatic -cells (Sjöholm Å, Zhang Q, Welsh N, Hansson A, Larsson O, Tally M, and Berggren PO. J Biol Chem 275: 21033–21040, 2000) and that the hGH-induced rise in [Ca2+]i involves Ca2+-induced Ca2+ release facilitated by tyrosine phosphorylation of ryanodine receptors (Zhang Q, Kohler M, Yang SN, Zhang F, Larsson O, and Berggren PO. Mol Endocrinol 18: 1658–1669, 2004). Here we investigated the tyrosine kinases that convey the hGH-induced rise in [Ca2+]i and insulin release in BRIN-BD11 -cells. hGH caused tyrosine phosphorylation of Janus kinase (JAK)2 and c-Src, events inhibited by the JAK2 inhibitor AG490 or the Src kinase inhibitor PP2. Although hGH-stimulated rises in [Ca2+]i and insulin secretion were completely abolished by AG490 and JAK2 inhibitor II, the inhibitors had no effect on insulin secretion stimulated by a high K+ concentration. Similarly, Src kinase inhibitor-1 and PP2, but not its inactive analog PP3, suppressed [Ca2+]i elevation and completely abolished insulin secretion stimulated by hGH but did not affect responses to K+. Ovine prolactin increased [Ca2+]i and insulin secretion to a similar extent as hGH, effects prevented by the JAK2 and Src kinase inhibitors. In contrast, bovine GH evoked a rise in [Ca2+]i but did not stimulate insulin secretion. Neither JAK2 nor Src kinase inhibitors influenced the effect of bovine GH on [Ca2+]i. Our study indicates that hGH stimulates rise in [Ca2+]i and insulin secretion mainly through activation of the prolactin receptor and JAK2 and Src kinases in rat insulin-secreting cells. c-Src; growth hormone receptor; prolactin receptor; Ca2+-induced Ca2+ release  相似文献   

15.
To study the effects of flow on in situendothelial intracellular calcium concentration([Ca2+]i) signaling, rat aortic rings wereloaded with fura 2, mounted on a tissue flow chamber, and divided intocontrol and flow-pretreated groups. The latter was perfused with bufferat a shear stress of 50 dyns/cm2 for 1 h. Endothelial[Ca2+]i responses to ACh or shear stresseswere determined by ratio image analysis. Moreover, ACh-induced[Ca2+]i elevation responses were measured ina calcium-free buffer, or in the presence of SKF-96365, to elucidatethe role of calcium influx in the flow effects. Our results showed that1) ACh increased endothelial[Ca2+]i in a dose-dependent manner, and theseresponses were incremented by flow-pretreatment; 2) thedifferences in ACh-induced [Ca2+]i elevationbetween control and flow-pretreated groups were abolished by SKF-96365or by Ca2+-free buffer; and 3) in the presenceof 105 M ATP, shear stress induced dose-dependent[Ca2+]i elevation responses that were notaltered by flow-pretreatment. In conclusion, flow-pretreatment augmentsthe ACh-induced endothelial calcium influx in rat aortas ex vivo.

  相似文献   

16.
Bovine adrenalzona fasciculata cells (AZF) express a noninactivatingK+ current(IAC) whoseinhibition by adrenocorticotropic hormone and ANG II may be coupled tomembrane depolarization andCa2+-dependentcortisol secretion. We studiedIACinhibition byCa2+ and theCa2+ionophore ionomycin in whole cell and single-channel patch-clamp recordings of AZF. In whole cell recordings with intracellular (pipette)Ca2+concentration([Ca2+]i)buffered to 0.02 µM,IAC reachedmaximum current density of 25.0 ± 5.1 pA/pF(n = 16); raising[Ca2+]ito 2.0 µM reduced it 76%. In inside-out patches, elevated[Ca2+]idramatically reducedIAC channelactivity. Ionomycin inhibited IAC by 88 ± 4% (n = 14) without altering rapidlyinactivating A-type K+ current.Inhibition of IACby ionomycin was unaltered by adding calmodulin inhibitory peptide tothe pipette or replacing ATP with its nonhydrolyzable analog5'-adenylylimidodiphosphate.IAC inhibition byionomycin was associated with membrane depolarization. When[Ca2+]iwas buffered to 0.02 µM with 2 and 11 mM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), ionomycin inhibitedIAC by 89.6 ± 3.5 and 25.6 ± 14.6% and depolarized the same AZF by 47 ± 8 and 8 ± 3 mV, respectively (n = 4). ANG II inhibitedIAC significantlymore effectively when pipette BAPTA was reduced from 11 to 2 mM. Raising[Ca2+]iinhibits IACthrough a mechanism not requiring calmodulin or protein kinases,suggesting direct interaction withIAC channels. ANGII may inhibitIAC anddepolarize AZF by activating parallel signaling pathways, one of whichuses Ca2+ asa mediator.

  相似文献   

17.
In response to hypotonic treatment internodal cells of the brackishwater Characeae Lamprothamnium regulate turgor pressure by releasingK+ and Cl, accompanying membrane depolarization and atransient increase in membrane electrical conductance (Okazakiet al. 1984b). The hypothesis that a transient increase in cytoplasmicfree Ca2+ concentration ([Ca2+]c) caused by hypotonic treatmenttriggers release of K+ and Cl from the cell (Okazakiand Tazawa 1986a, b, c) was tested using tonoplast-removed cells.These cells did not regulate turgor pressure. The plasmalemmaconductance remained almost constant for a change in the intracellularfree Ca2+ concentration ([Ca2+],) from 10–6 to 10–2mol?m–3. The results suggest that some cytoplasmic Ca2+-sensitizingsoluble components, which work as mediators to activate K+ and/orCl channels in the plasmalemma and/or the tonoplast,were lost after desintegration of the tonoplast. The plasmalemmapotential was depolarized under high [Ca2+]i. However, no membranedepolarization was observed upon hypotonic treatment. Sincemembrane depolarization has been suggsted to occur under normal[Ca2+]c in intact cells (Okazaki and Tazawa 1986a, b), its absencesuggests that some cytoplasmic factors, which induce the membranedepolarization in a Ca2+-independent manner, are lost in tonoplast-removedcells. 1 Present address: Department of Biology, Osaka Medical College,Sawaragi-cho 2-41, Takatsuki, Osaka 569, Japan. (Received October 22, 1986; Accepted March 31, 1987)  相似文献   

18.
We testedthe hypothesis that strain is the primary mechanical signal in themechanosensitive modulation of intracellular Ca2+concentration ([Ca2+]i) in airway smoothmuscle. We found that [Ca2+]i wassignificantly correlated with muscle length during isotonic shorteningagainst 20% isometric force (Fiso). When the isotonic loadwas changed to 50% Fiso, data points from the 20 and 50% Fiso experiments overlapped in thelength-[Ca2+]i relationship. Similarly, datapoints from the 80% Fiso experiments clustered near thosefrom the 50% Fiso experiments. Therefore, despite 2.5- and4-fold differences in external load, [Ca2+]idid not deviate much from the length-[Ca2+]irelation that fitted the 20% Fiso data. Maximal inhibition of sarcoplasmic reticular (SR) Ca2+ uptake by 10 µMcyclopiazonic acid (CPA) did not significantly change[Ca2+]i in carbachol-induced isometriccontractions and isotonic shortening. CPA also did not significantlychange myosin light-chain phosphorylation or force redevelopment whencarbachol-activated muscle strips were quickly released from optimallength (Lo) to 0.5 Lo. These results are consistent with thehypothesis and suggest that SR Ca2+ uptake is not theunderlying mechanism.

  相似文献   

19.
We investigated the role of intracellular Mg2+(Mgi2+) on the ATP regulation ofNa+/Ca2+ exchanger in squid axons and bovineheart. In squid axons and nerve vesicles, the ATP-upregulated exchangerremains activated after removal of cytoplasmic Mg2+, evenin the absence of ATP. Rapid and complete deactivation of theATP-stimulated exchange occurs upon readmission ofMgi2+. At constant ATP concentration, the effectof intracellular Mg2+ concentration([Mg2+]i) on the ATP regulation of exchangeris biphasic: activation at low [Mg2+]i,followed by deactivation as [Mg2+]i isincreased. No correlation was found between the above results and thelevels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] measured innerve membrane vesicles. Incorporation ofPtdIns(4,5)P2 into membrane vesicles activates Na+/Ca2+ exchange in mammalian heart but not insquid nerve. Moreover, an exogenous phosphatase prevents MgATPactivation in squid nerves but not in mammalian heart. It is concludedthat 1) Mgi2+ is an essentialcofactor for the deactivation part of ATP regulation of the exchangerand 2) the metabolic pathway of ATP upregulation of theNa+/Ca2+ exchanger is different in mammalianheart and squid nerves.

  相似文献   

20.
Allosteric regulation by cytosolic Ca2+ of Na+/Ca2+ exchange activity in the Ca2+ efflux mode has received little attention because it has been technically difficult to distinguish between the roles of Ca2+ as allosteric activator and transport substrate. In this study, we used transfected Chinese hamster ovary cells to compare the Ca2+ efflux activities in nontransfected cells and in cells expressing either the wild-type exchanger or a mutant, (241–680), that operates constitutively; i.e., its activity does not require allosteric Ca2+ activation. Expression of the wild-type exchanger did not significantly lower the cytosolic Ca2+ concentration ([Ca2+]i) compared with nontransfected cells. During Ca2+ entry through store-operated Ca2+ channels, Ca2+ efflux by the wild-type exchanger became evident only after [Ca2+]i approached 100–200 nM. A subsequent decline in [Ca2+]i was observed, suggesting that the activation process was time dependent. In contrast, Ca2+ efflux activity was evident under all experimental conditions in cells expressing the constitutive exchanger mutant. After transient exposure to elevated [Ca2+]i, the wild-type exchanger behaved similarly to the constitutive mutant for tens of seconds after [Ca2+]i had returned to resting levels. We conclude that Ca2+ efflux activity by the wild-type exchanger is allosterically activated by Ca2+, perhaps in a time-dependent manner, and that the activated state is briefly retained after the return of [Ca2+]i to resting levels. persistent calcium activation; store-operated channels; calcium transient  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号