首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
生物基化学品2,3-丁二醇的研究进展   总被引:4,自引:0,他引:4  
从2,3-丁二醇的发酵研究(菌株、非粮碳源、发酵工艺)和下游处理技术两方面对生物法生产2,3-丁二醇的研究进展进行了概述,并对不同的分离方法进行了比较,指出降低2,3-丁二醇的生产成本应从菌种选育、发酵工艺优化及高效廉价节能的分离工艺研究出发,并在此基础上进行系统优化、展开2,3-丁二醇的应用研究是今后生物法生产2,3-丁二醇研究应关注的问题.  相似文献   

2.
对两株克雷伯氏菌(Klebsiella pneumoniae)批式流加发酵生产2,3-丁二醇进行了研究,结果表明,K. pneumoniae CICC 10011代谢产生的各种有机酸和乙醇浓度均明显低于K. pneumoniae DSM 2026,发酵56 h,目标产物(2,3-丁二醇+乙偶姻)浓度为85.61 g/L,生产强度为1.53 g/(L×h),葡萄糖质量转化率为45%. 对2株克雷伯氏菌发酵的代谢流量分析表明,K. pneumoniae CICC 10011是生产2,3-丁二醇的优良菌株.  相似文献   

3.
2,3-丁二醇的发酵生产   总被引:4,自引:0,他引:4       下载免费PDF全文
宋源泉  许赟珍  李强  刘德华 《化工进展》2011,30(5):1069-1077
能源危机和环境污染使得化工行业的发展举步维艰,亟待开发新的发展模式,以可再生能源为原料的生物炼制技术成为可行的途径之一。2,3-丁二醇的发酵生产是现代生物炼制的重要课题之一。2,3-丁二醇作为一种大宗的化学产品具有广泛的应用价值,尤其在化工、食品、燃料、医药等领域。本文简要描述了2,3-丁二醇在微生物体内的代谢途径,着重讨论了2,3-丁二醇的发酵生产,对发酵的菌种种类、菌种诱变和定向改造、各种发酵影响因素(包括底物、pH值、溶氧、温度以及发酵方式)进行了详细的归纳总结,同时展望了2,3-丁二醇发酵生产的研究发展方向。  相似文献   

4.
2,3-丁二醇分离提取工艺研究进展   总被引:1,自引:0,他引:1  
樊亚超  张霖  廖莎  王领民 《化工进展》2016,35(8):2323-2328
2,3-丁二醇应用广泛,是一种潜在的平台化合物,可以用于替代传统平台化合物——四碳烃。基于能源安全及绿色环保的需求,生物炼制制备2,3-丁二醇受到人们的青睐。与化学法相比,生物炼制制备2,3-丁二醇具有明显的优势。然而,2,3-丁二醇的高沸点及强极性的特点使它难以从发酵液中分离。这成为了生物炼制2,3-丁二醇工艺工业化的瓶颈。因此,开发高效价廉的2,3-丁二醇分离工艺成为研究的重点。本文综述了从发酵液中分离2,3-丁二醇工艺的研究进展。2,3-丁二醇的分离主要包括固液分离、发酵液深处理及2,3-丁二醇精制3个方面,涉及的分离技术包括离心、絮凝、膜过滤、离子交换、电渗析、萃取、精馏等以及相关技术的优化和耦合。提出今后的研究重点在于现有分离工艺的高效整合及新型分离工艺的有效突破。  相似文献   

5.
2,3-丁二醇发酵过程的菌体生物质回收利用初步研究   总被引:1,自引:0,他引:1  
研究了在粘质沙雷氏菌利用蔗糖生产2,3-丁二醇过程中,回收利用菌体制备溶菌液替代发酵培养基中氮源。摇瓶发酵培养中,2,3-丁二醇浓度为39.3 g.L-1,与酵母粉作为氮源相比,产物浓度相近;以多次回收废菌体制成的溶菌液替代酵母粉作为氮源,2,3-丁二醇浓度略低。3.7 L发酵罐实验中,共有221.95 g.L-1蔗糖被利用,2,3-丁二醇最高浓度为109.2 g.L-1,2,3-丁二醇转化率达到0.492 g.g-1、产率达到2.6 g.L-1.h-1。  相似文献   

6.
2,3-丁二醇发酵液的双水相萃取   总被引:5,自引:1,他引:4  
研究了从发酵液中双水相萃取2,3-丁二醇的工艺条件,以目标产物的分配系数和回收率为指标,分别考察了不同双水相萃取体系以及相组成对2,3-丁二醇分配的影响,确定了适合于2,3-丁二醇发酵液萃取的最佳相组成. 结果表明,适合2,3-丁二醇双水相萃取的体系为乙醇/硫酸铵体系,对于絮凝后的发酵液,采用硫酸铵浓度为20%(w)、乙醇浓度为27%(w)的双水相体系,发酵液中2,3-丁二醇的分配系数和回收率最高,分别达到了7.4和90.18%. 该工艺操作简单,能够有效地分离发酵液中的2,3-丁二醇.  相似文献   

7.
粘质沙雷氏菌利用蔗糖和柠檬酸铵生产2,3-丁二醇的研究   总被引:1,自引:0,他引:1  
研究了几种无机氮源对粘质沙雷氏菌发酵生物量和产物2,3-丁二醇形成的影响,在确定柠檬酸铵为无机氮源的基础上,利用响应面法(RSM)对柠檬酸铵和硫酸锰的浓度进行了优化,得出了最佳浓度,并以此最优成分进行了摇瓶发酵和分批补料发酵.在摇瓶发酵中,110 g·L-1的蔗糖最终被转化成44 g·L-1的2,3-丁二醇,转化率为0.4 g·g-1,产率为1.13 g·L-1·h-1;在分批补料发酵中,共有166 g·L-1的蔗糖被消耗,2,3-丁二醇的最高浓度为81.2 g·L-1,乙偶姻的浓度为7.7 g·L-1,2,3-丁二醇转化率达到0.489 g·g-1,产率达到1.7 g·L-1·h-1.  相似文献   

8.
2,3-丁二醇发酵过程中葡萄糖碳流分配数学模型   总被引:1,自引:0,他引:1  
产酸克雷伯氏菌Klebsiella oxytoca在利用葡萄糖产2,3-丁二醇过程中,底物葡萄糖主要有7种去处:转化为生物量;通过TCA循环支路产生CO2和H2O;通过各发酵支路分别产生2,3-丁二醇、乙醇、乙偶姻、乙酸以及乳酸等代谢产物.在拟稳态假设的基础上分别利用ATP及辅酶平衡建立了该过程中葡萄糖碳流在这7条支路之间分配的数学模型,着重分析了氧气供给量对发酵过程影响的相关机制;并应用实验数据回归了模型参数,将模型预测值与实验值进行了比较.结果表明,模型预测值与实验值较吻合,该模型能较好地反映Klebsiella oxytoca发酵产2,3-丁二醇过程中葡萄糖碳流的分配规律,对利用溶氧合理控制代谢流分布具有一定的指导意义.  相似文献   

9.
研究了几种工业氮源对粘质沙雷氏菌G1发酵生产2,3-丁二醇的影响,在确定玉米浆干粉为氮源的基础上,利用Plackett-Burman(PB)实验和响应面法(RSM)实验对玉米浆干粉和磷酸氢二铵[(NH4)2HPO4]的浓度进行了优化,确定优化培养基(g·L-1)为:蔗糖90,玉米浆干粉20.32,(NH4)2HPO47.21,NaAc 4,柠檬酸钠14,MgSO40.5,Fe-SO40.02,MnSO40.01。并以此优化培养基进行了摇瓶和分批补料发酵,结果表明,摇瓶发酵中,90g·L-1的蔗糖最终被转化成43.06g·L-1的2,3-丁二醇;分批补料发酵中,2,3-丁二醇浓度为128.28g·L-1,产率为2.67g·L-1·h-1,转化率为0.48g·g-1蔗糖。以玉米浆干粉和(NH4)2HPO4为氮源,2,3-丁二醇浓度较高,培养基的成本大幅降低,为工业化生产奠定了基础。  相似文献   

10.
2,3-丁二醇发酵液的絮凝除菌与絮凝细胞的循环利用   总被引:4,自引:2,他引:2  
研究了用壳聚糖/海藻酸钠复合絮凝剂处理2,3-丁二醇发酵液的工艺条件,以絮凝率为指标,考察了壳聚糖分子量、壳聚糖用量、海藻酸钠助凝剂用量、发酵液pH值、搅拌时间等因素对处理效果的影响,确定了适于2,3-丁二醇发酵液体系的絮凝工艺. 结果表明,最佳操作条件为壳聚糖分子量40 kDa,壳聚糖用量0.375 g/L,海藻酸钠助凝剂用量0.250 g/L,发酵液pH 5.0,搅拌时间30 min,静置1 h. 该条件下,絮凝率可达98%以上,2,3-丁二醇保留率约为99%,且絮凝后上清液清澈、透明. 絮凝后的菌体可再次利用,发酵过程中菌体最高浓度(OD值)可达13.5,其转化能力与絮凝前相当.  相似文献   

11.
针对利用葡萄糖和木糖合成2,3-丁二醇的Klebsiella pneumoniae XJ-Li菌,优化培养基组成与发酵条件,围绕五、六碳糖共代谢的特点,探讨简单可行的代谢调控方法. 结果表明,60 g/L葡萄糖和40 g/L木糖为碳源,5.75 g/L NH4H2PO4为氮源,pH值维持在5.5,培养温度38℃, 2,3-丁二醇浓度可达19.24 g/L. 确定了pH值调控和外源添加维生素C的调控方式,通过调节发酵过程中pH值于5.5左右,使2,3-丁二醇的产量提高了16.4%;添加60 mg/L维生素C调节培养基的氧化还原状态,可使2,3-丁二醇的产量提高44.3%,批式发酵48 h, 2,3-丁二醇终浓度可达33.47 g/L.  相似文献   

12.
Biochemical 2,3-butanediol is a renewable material, but the lack of an effective separation process limits its industrial application. We developed an effective separation process to recover 2,3-butanediol from fermentation broth by reactive-extraction with ion-exchange resin HZ732 as catalyst. n-Butylaldehyde was used as both reactant and extractant. Feasible operation conditions were obtained as follows: room temperature, C cat =200 g·L?1, three-stage cross-current extraction, with reactant ratio (V Butylaldehyde : V fermentation broth ) 0.05 for each stage. Reactive-extraction can recover over 98% of 2,3-butanediol in the form of 2-propyl-4,5-dimethyl-1,3-dioxolane from fermentation broth. Then 2,3-butanediol was obtained by hydrolyzing 2-propyl-4,5-dimethyl-1,3-dioxolane and purified by vacuum distillation. The total yield rate of 2,3-butanediol through the process was over 94% and purity of final product reached 99%.  相似文献   

13.
An effective process was developed to separate 2,3-butanediol (2,3-BD) from fermentation broth (FB) by reactive-extraction. Propionaldehyde (PRA) was used as reactant and reaction product 2-ethyl-4,5-dimethyl-1,3-dioxolane (EDD) acted as extractant. HCl was selected as catalyst. Appropriate conditions were obtained by experiment as follows: 10 °C, C HCl =0.2mol·L?1, two-stage cross-current extraction, reactant volume ratio (V PRA : V FB ) for first stage and second stage is 0.10 and 0.05, respectively. The yield rate of 2,3-butanediol for the whole process can reach 90% w/w, and 2,3-butanediol in the final product can be more than 99% w/w. The novel process required less solution and especially had advantages in treating dilute fermentation broth. Furthermore, equilibrium and kinetic study were investigated on the reaction of propionaldehyde and 2,3-butanediol to provide basic data for process development. The results reveal that reaction enthalpy and activation energy of the reaction were ?21.84±2.38 KJ·mol?1 and 51.97±2.84 KJ·mol?1, respectively. Kinetics was well described by pseudo-homogeneous model.  相似文献   

14.
2,3-丁二醇分离纯化中反应精馏工艺   总被引:1,自引:0,他引:1  
乙醛-环己烷反应萃取体系能够有效分离发酵液中的2,3-丁二醇。文章重点研究了2,3-丁二醇-乙醛反应萃取液的连续水解精馏工艺,为工业化生产提供理论基础。水解精馏使用阳离子交换树脂HZ732为水解催化剂,以2,4,5-三甲基-1,3-二氧戊环(2,3-丁二醇-乙醛缩醛)水解率为指标,考察了反应段温度、反应段级数、进料速度、进料油水比(2,4,5-三甲基-1,3-二氧戊环和水摩尔比)和回流比的影响。通过实验得到优化水解精馏工艺条件为:反应段平均温度90℃,反应段理论板数为20,进料油水比为0.6,进料速度0.2 h-1。在该条件下2,4,5-三甲基-1,3-二氧戊环水解率为73%,未水解2,4,5-三甲基-1,3-二氧戊环被回收。水解液经精馏得到2,3-丁二醇产品,纯度(质量分数)>96%,总收率≥93%。开发了连续水解精馏工艺,为整个工艺工业化实践提供了参考。  相似文献   

15.
刘国兴  江波  王元好  戴建英  修志龙 《化工学报》2009,60(11):2798-2804
实验考察了乙醇/碳酸钾双水相萃取盾叶薯蓣发酵液中2,3-丁二醇的分配情况,并对其工艺条件进行了优化。结果表明,当乙醇22%(质量)、碳酸钾26%(质量)时,发酵液中2,3-丁二醇的回收率达到最高值97%,此时,乙偶姻和残余还原糖的回收率为97%和87%,菌体和蛋白的去除率分别为99%和94%,而丙酮酸、柠檬酸、苹果酸、延胡索酸和琥珀酸的去除率高达100%,这为2,3-丁二醇的工业分离提供了一种新的技术。  相似文献   

16.
盾叶薯蓣糖化液发酵生产2,3-丁二醇   总被引:4,自引:2,他引:2  
利用克雷伯氏杆菌以盾叶薯蓣糖化液为底物发酵生产2,3-丁二醇(2,3-BD),考察了2,3-BD浓度、生产强度、有机酸生成及代谢流量分布情况. 结果表明,盾叶薯蓣中的有机酸成分能促进三羧酸循环途径和乙酸途径的代谢流,减弱琥珀酸途径的代谢流,从而提高2,3-BD的浓度. 以盾叶薯蓣糖化液为底物,采用批式流加方式,补加固体葡萄糖,发酵56 h,发酵液中2,3-BD最终浓度达到80.20 g/L,乙偶姻与2,3-BD浓度之和最终达到86.19 g/L,生产强度达到1.54 g/(L×h),比单独以葡萄糖为底物时分别提高了8.50%, 7.38%和7.69%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号