首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whether T-cell receptors (TCRs) recognize antigenic peptides bound to major histocompatability complex (MHC) molecules through common or distinct docking modes is currently uncertain. We report the crystal structure of a complex between the murine N15 TCR [1-4] and its peptide-MHC ligand, an octapeptide fragment representing amino acids 52-59 of the vesicular stomatitis virus nuclear capsid protein (VSV8) bound to the murine H-2Kb class I MHC molecule. Comparison of the structure of the N15 TCR-VSV8-H-2Kb complex with the murine 2C TCR-dEV8-H-2Kb [5] and the human A6 TCR-Tax-HLA-A2 [6] complexes revealed a common docking mode, regardless of TCR specificity or species origin, in which the TCR variable Valpha domain overlies the MHC alpha2 helix and the Vbeta domain overlies the MHC alpha1 helix. As a consequence, the complementary determining regions CDR1 and CDR3 of the TCR Valpha and Vbeta domains make the major contacts with the peptide, while the CDR2 loops interact primarily with the MHC. Nonetheless, in terms of the details of the relative orientation and disposition of binding, there is substantial variation in TCR parameters, which we term twist, tilt and shift, and which define the variation of the V module of the TCR relative to the MHC antigen-binding groove.  相似文献   

2.
To study how the T cell receptor interacts with its cognate ligand, the MHC/peptide complex, we used site directed mutagenesis to generate single point mutants that alter amino acids in the CDR3beta loop of a H-2Kb restricted TCR (N30.7) specific for an immunodominant peptide N52-N59 (VSV8) derived from the vesicular stomatitis virus nucleocapsid. The effect of each mutation on antigen recognition was analyzed using wild type H-2Kb and VSV8 peptide, as well as H-2Kb and VSV8 variants carrying single replacements at residues known to be exposed to the TCR. These analyses revealed that point mutations at some positions in the CDR3beta loop abrogated recognition entirely, while mutations at other CDR3beta positions caused an altered pattern of antigen recognition over a broad area on the MHC/peptide surface. This area included the N-terminus of the peptide, as well as residues of the MHC alpha1 and alpha2 helices flanking this region. Assuming that the N30 TCR docks on the MHC/peptide with an orientation similar to that recently observed in two different TCR-MHC/peptide crystal structures, our findings would suggest that single amino acid alterations within CDR3beta can affect the interaction of the TCR with an MHC surface region distal from the predicted CDR3beta-Kb/VSV8 interface. Such unique recognition capabilities are generated with minimal alterations in the CDR3 loops of the TCR. These observations suggest the hypothesis that extensive changes in the recognition pattern due to small perturbations in the CDR3 structure appears to be a structural strategy for generating a highly diversified TCR repertoire with specificity for a wide variety of antigens.  相似文献   

3.
The specificity of T cell-mediated immune responses is primarily determined by the interaction between the T cell receptor (TCR) and the antigenic peptide presented by the major histocompatibility complex (MHC) molecules. To refine our understanding of interactions between the TCR and the antigenic peptide of vesicular stomatitis virus (VSV) presented by the class I MHC molecule H-2Kb, we constructed a TCR alpha chain transgenic mouse in a TCR alpha-deficient background to define specific structural features in the TCR beta chain that are important for the recognition of the VSV/H-2Kb complex. We found that for a given peptide, a peptide-specific, highly conserved amino acid could always be identified at position 98 of the complementarity-determining region 3 (CDR3) loop of TCR beta chains. Further, we demonstrated that substitutions at position 6, but not position 1, of the VSV peptide induced compensatory changes in the TCR in both the amino acid residue at position 98 and the length of the CDR3beta loop. We conclude that the amino acid residue at position 98 of the CDR3beta loop is a key residue that plays a critical role in determining the specificity of TCR-VSV/H-2Kb interactions and that a specific length of the CDR3beta loop is required to facilitate such interactions. Further, these findings suggest that the alpha and beta chains of TCRs interact with amino acid residue(s) toward the N and C termini of the VSV peptide, respectively, providing functional evidence for the orientation of a TCR with its peptide/MHC ligand as observed in the crystal structures of TCR/peptide/MHC complexes.  相似文献   

4.
Vesicular stomatitis virus (VSV) elicits H-2Kb-restricted CTLs specific for the immunodominant VSV octapeptide RGYVYQGL. To study the structural features important for interaction between the TCR beta-chain and the peptide/MHC complex, we immunized TCR alpha-chain transgenic mice with the VSV peptide and raised a panel of anti-VSV CTL clones with identical TCR alpha-chains. Consistent with our previous analysis of uncloned populations of primary CTLs, the anti-VSV CTL clones were all Vbeta13+ and expressed TCR beta-chains with highly homologous complementarity-determining region 3 (CDR3) loops. Although the clones expressed similar TCRs, they differed in their ability to cross-react with VSV peptide variants singly substituted at TCR contact positions 4 and 6. These findings allowed us to identify short stretches of amino acids in the C-terminal region of the CDR3beta loop that, when altered, modify the cross-reaction capability of the TCR to position 4 and position 6 variant peptides. To further probe the structural correlates of biologic cross-reactivity, we used cross-reactive CTL clones and cell lines expressing point mutations in H-2Kb to investigate the effect of single amino acid changes in the peptide on the pattern of recognition of the TCR for the peptide/MHC complex. Single conservative substitutions in the peptide were sufficient to alter the recognition contacts between a cross-reactive TCR and the MHC molecule, supporting the idea that the TCR can make overall structural adjustments in MHC contacts to accommodate single amino acid changes in the peptide.  相似文献   

5.
The T lineage repertoire is shaped by T cell receptor (TCR)-dependent positive and negative thymic selection processes. Using TCR-transgenic (N15tg) beta2-microglobulin-deficient (beta2m-/-) RAG-2(-/-) H-2(b) mice specific for the VSV8 (RGYVYQGL) octapeptide bound to Kb, we identified a single weak agonist peptide variant V4L (L4) inducing phenotypic and functional T cell maturation. The cognate VSV8 peptide, in contrast, triggers negative selection. The crystal structure of L4/Kb was determined and refined to 2.1 A for comparison with the VSV8/Kb structure at similar resolution. Aside from changes on the p4 side chain of L4 and the resulting alteration of the exposed Kb Lys-66 side chain, these two structures are essentially identical. Hence, a given TCR recognizes subtle distinctions between highly related ligands, resulting in dramatically different selection outcomes. Based on these finding and the recent structural elucidation of the N15-VSV8/Kb complex, moreover, it appears that the germ-line Valpha repertoire contributes in a significant way to positive selection.  相似文献   

6.
OBJECTIVE: To use molecular modeling tools to analyze the potential structural basis for the genetic association of rheumatoid arthritis (RA) with the major histocompatibility complex (MHC) "shared epitope," a set of conserved amino acid residues in the third hypervariable region of the DRbeta chain. METHODS: Homology model building techniques were used to construct molecular models of the arthritis-associated DRB1*0404 molecule and a T cell receptor (TCR) from T cell clone EM025, which is specific for DR4 molecules containing the shared epitope sequence. Interactive graphics techniques were used to orient the TCR on the DR molecule, guided by surface complementarity analysis. RESULTS: The predicted TCR-MHC-peptide complex involved multiple interactions and specificity for the shared epitope. TCR residues CDR1beta D30, CDR2beta N51, and CDR3beta Q97 were positioned to potentially participate in hydrogen bond interactions with the shared epitope DRbeta residues Q70 and R71. CONCLUSION: These results suggest a structural mechanism in which specific TCR recognition and possibly Vbeta selection are directly influenced by the disease-associated MHC polymorphisms.  相似文献   

7.
The T cell receptor (TCR) inherently has dual specificity. T cells must recognize self-antigens in the thymus during maturation and then discriminate between foreign pathogens in the periphery. A molecular basis for this cross-reactivity is elucidated by the crystal structure of the alloreactive 2C TCR bound to self peptide-major histocompatibility complex (pMHC) antigen H-2Kb-dEV8 refined against anisotropic 3.0 angstrom resolution x-ray data. The interface between peptide and TCR exhibits extremely poor shape complementarity, and the TCR beta chain complementarity-determining region 3 (CDR3) has minimal interaction with the dEV8 peptide. Large conformational changes in three of the TCR CDR loops are induced upon binding, providing a mechanism of structural plasticity to accommodate a variety of different peptide antigens. Extensive TCR interaction with the pMHC alpha helices suggests a generalized orientation that is mediated by the Valpha domain of the TCR and rationalizes how TCRs can effectively "scan" different peptides bound within a large, low-affinity MHC structural framework for those that provide the slight additional kinetic stabilization required for signaling.  相似文献   

8.
9.
The TCR found on CD4 T cells recognizes peptides bound to self MHC class II molecules as well as non-self MHC class II molecules. We have used the receptor on a cloned T cell line called D10.G4.1 (D10) to perform a structure-function analysis of this interaction. The D10 T cell clone recognizes not only a peptide from conalbumin (CA-wt) bound to syngeneic I-Ak against which it was raised, but also the allogeneic MHC molecules I-A(b,v,p,q,d). In the present study, we show that residue 30 in complementarity-determining region 1 (CDR1) of the TCR alpha-chain interacts with the I-A alpha-chain at hvr2 (residues 52, 53, and 55). We also show that residue 51 in CDR2 of the TCR alpha-chain interacts with the peptide at peptide residue 2. Finally, we show that residue 29 in CDR1 of the TCR beta-chain affects recognition of the glutamic acid at residue 66 in the I-A beta-chain. These data suggest an orientation of TCR relative to its peptide:MHC class II ligands. We argue that this orientation will be shared by all CD4 TCRs, and that it is only subtly different from the common orientation proposed for receptors binding to MHC class I.  相似文献   

10.
Within the lymphoid compartment, CD8 is expressed either as an alphaalpha homodimer or as an alphabeta heterodimer. Prior functional characterization of CD8alpha transfectants has demonstrated that CD8alphaalpha homodimers can reconstitute T cell responses in the absence of the CD8beta subunit. In order to now examine the role of CD8beta in TCR recognition, the CD8alpha cDNA alone or in combination with CD8beta cDNA was transfected into the mouse T cell hybridoma, N15wt, specific for VSV8/Kb. Comparison of antigen-induced IL-2 production reveals that CD8alphabeta+ transfectants are 100-fold more sensitive in molar terms of peptide than CD8alphaalpha+ transfectants. This enhancement of IL-2 production is independent of CD8alpha or CD8beta cytoplasmic tails as demonstrated by analysis of cytoplasmic deletion mutants CD8alpha'beta, CD8alphabeta', and CD8alpha'beta'. These results indicate that the ectodomain of the CD8beta chain greatly enhances the coreceptor function of the CD8alphabeta molecule, at least for certain class I MHC restricted alphabeta TCRs.  相似文献   

11.
T cell responses to myelin basic protein (MBP) are thought to play an important role in the pathogenesis of multiple sclerosis (MS). The response to the 83-99 region of MBP represents a dominant response to MBP in patients with MS and is associated with HLA-DR2 that is linked with susceptibility to MS. Although T cell clones reactive to various regions of MBP have been found to exhibit heterogeneous TCR Vbeta gene usage in patients with MS, it is unclear whether T cell clones uniformly recognizing the 83-99 peptide of MBP in the context of the same DR molecule would have restricted TCR V gene rearrangements and recognition motifs. In this study, a panel of DR2- or DR4-restricted T cell clones specific for the MBP83-99 peptide were derived from 11 patients with MS and examined for TCR V gene usage by PCR and the recognition motifs using analog peptides. Our study revealed that despite a few T cell clone pairs having similar recognition motifs and shared sequence homology in the CDR3, the overall recognition motifs of MBP83-99-specific T cells were considerably diverse. Interestingly, the DR2-restricted T cell clones displayed a biased V gene usage for Valpha3 and Valpha8, while Vbeta gene rearrangements were highly heterogeneous. This study provided experimental evidence suggesting a limited heterogeneity in TCR Valpha gene rearrangements of MBP-reactive T cells in DR2 patients with MS.  相似文献   

12.
The bacterial superantigen staphylococcal enterotoxin A (SEA) binds with high affinity to major histocompatibility complex (MHC) class II molecules and subsequently activates T cells bearing particular T-cell receptor (TCR) Vbeta chains. Structural and mutational studies have defined two distinct MHC class II binding sites located in the N-terminal and C-terminal domains of SEA. The N-terminal F47 amino acid is critically involved in a low-affinity interaction to the MHC class II alpha-chain, while the C-terminal residues H187, H225, and D227 coordinate a Zn2+ ion and bind with moderate affinity to the beta-chain. In order to analyze whether the SEA-MHC class II alpha-chain interaction plays a role in dictating the in vivo repertoire of T-cell subsets, we studied distinct Vbeta populations after stimulation with wild-type SEA [SEA(wt)] and SEA with an F47A mutation [SEA(F47A)]. Injections of SEA(wt) in C57BL/6 mice induced cytokine release in serum, strong cytotoxic T-lymphocyte activity, expansion of T-cell subsets, and modulated expression of the T-cell activation antigens CD25, CD11a, CD44, CD62L, and CD69. SEA-reactive TCR Vbeta3+ and Vbeta11+ T cells were activated, while TCR Vbeta8+ T cells remained unaffected. The SEA(F47A) mutant protein induced a weaker T-cell response and failed to induce substantial interleukin-6 production compared to SEA(wt). Notably, SEA(F47A) failed to activate TCR Vbeta11+ T cells, whereas in vivo expansion and modulation of T-cell activation markers on TCR Vbeta3+ T cells were similar to those for SEA(wt). A similar response to SEA(F47A) was seen among CD4+ and CD8+ T cells. Activation of TCR Vbeta3+ and TCR Vbeta11+ T-cell hybridomas confirmed that SEA(F47A) activates TCR Vbeta3+ but not TCR Vbeta11+ T cells. The data support the view that the SEA-N-terminal MHC class II alpha-chain interaction defines a topology that is required for engagement of certain TCR Vbeta chains in vivo.  相似文献   

13.
The positive selection of CD4+ T cells requires the expression of major histocompatibility complex (MHC) class II molecules in the thymus, but the role of self-peptides complexed to class II molecules is still a matter of debate. Recently, it was observed that transgenic mice expressing a single peptide-MHC class II complex positively select significant numbers of diverse CD4+ T cells in the thymus. However, the number of selected T cell specificities has not been evaluated so far. Here, we have sequenced 700 junctional complementarity determining regions 3 (CDR3) from T cell receptors (TCRs) carrying Vbeta11-Jbeta1.1 or Vbeta12-Jbeta1.1 rearrangements. We found that a single peptide-MHC class II complex positively selects at least 10(5) different Vbeta rearrangements. Our data yield a first evaluation of the size of the T cell repertoire. In addition, they provide evidence that the single Ealpha52-68-I-Ab complex skews the amino acid frequency in the TCR CDR3 loop of positively selected T cells. A detailed analysis of CDR3 sequences indicates that a fraction of the beta chain repertoire bears the imprint of the selecting self-peptide.  相似文献   

14.
15.
OBJECTIVE: To identify features of the T cell receptors (TCRs) present on clonally expanded T cells in the joints of patients with similar types of childhood rheumatic disease. Vbeta8 and Vbeta20 TCRs were selected as prototypic for polyarticular juvenile rheumatoid arthritis (JRA) and pauciarticular/juvenile spondylarthropathy (SpA), respectively. METHODS: The portion of the TCR beta chain involved in antigen recognition in the synovial tissue, synovial fluid, and peripheral blood from patients with JRA and juvenile SpA was cloned and sequenced. The frequency of expanded clonotypes, size of expansions, the Jbeta region, and sequence motifs were determined for >2,000 sequences. RESULTS: The majority of Vbeta20 and Vbeta8 clonal expansions were found in the joint rather than the peripheral blood. While instances of both Vbeta8 and Vbeta20 clonal expansion were detected in all disease types, the features of these expanded clonotypes were specific for disease type and Vbeta family. For example, Vbeta20 clonal expansion was characterized by many small expanded clonotypes in samples from patients with pauciarticular JRA and juvenile SpA while single large Vbeta8-specific expansions were found only in patients with polyarticular disease. Motifs specific to individual patients were identified, and for Vbeta20 clonotypes, a motif was found in synovial tissue samples. CONCLUSION: Identification of common TCR features in oligoclonal expansions within individual patients and between patients with the same type of JRA suggests the recognition of a common or limited group of antigens in these diseases.  相似文献   

16.
To elucidate the structural basis of T cell recognition of hapten-modified antigenic peptides, we studied the interaction of the T1 T cell antigen receptor (TCR) with its ligand, the H-2Kd-bound Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid (ABA) on P. berghei circumsporozoite Lys259. The photoaffinity-labeled TCR residue(s) were mapped as Tyr48 and/or Tyr50 of complementary determining region 2beta (CDR2beta). Other TCR-ligand contacts were identified by mutational analysis. Molecular modeling, based on crystallographic coordinates of closely related TCR and major histocompatibility complex I molecules, indicated that ABA binds strongly and specifically in a cavity between CDR3alpha and CDR2beta. We conclude that TCR expressing selective Vbeta and CDR3alpha sequences form a binding domain between CDR3alpha and CDR2beta that can accommodate nonpeptidic moieties conjugated at the C-terminal portion of peptides binding to major histocompatibility complex (MHC) encoded proteins.  相似文献   

17.
Human HLA B27-restricted cytotoxic T lymphocytes (CTL) specific for the influenza A epitope NP383-391 use similar TCR alpha and beta chains, with two closely related J alpha segments used by six of nine CTL clones from three unrelated donors (Bowness et al., Eur J. Immunol. 1993. 23: 1417-1421). The role of TCR complementarity-determining region (CDR)3alpha residues 93 and 100-102 was examined by site-directed mutagenesis, following expression of the TCR alpha and beta extracellular domains from one clone as a TCR zeta fusion heterodimer in rat basophil leukemia (RBL) cells. For the first time we have measured direct binding of tetrameric HLA B*2705/NP383-391 complexes to transfected TCR. Independently peptide-pulsed antigen-presenting cells (APC) were used to induce TCR-mediated degranulation of RBL transfectants. Our results show a key role for the conserved TCRalpha CDR3 J alpha-encoded residue Y102 in recognition of HLA B27/NP383-391. Thus the Y102D mutation abolished both tetramer binding and degranulation in the presence of peptide-pulsed APC. Even the Y102F mutation, differing only by a single hydroxyl group from the native TCR, abolished detectable degranulation. Further mutations F93A and S100R also abolished recognition. Interestingly, the N101A mutation recognized HLA B27/NP in functional assays despite having significantly reduced tetramer binding, a finding consistent with "kinetic editing" models of T cell activation. Modeling of the GRb TCR CDR3alpha loop suggests that residue Y102 contacts the HLA B*2705 alpha1 helix. It is thus possible that selection of germ-line TCRAJ-encoded residues at position 102 may be MHC driven.  相似文献   

18.
CD8+ T cells respond to Ags when their clonotypic receptor, the TCR, recognizes nonself peptides displayed by MHC class I molecules. The TCR/ligand interactions are degenerate because, in its life time, the TCR interacts with self MHC class I-self peptide complexes during ontogeny and with self class I complexed with nonself peptides to initiate Ag-specific responses. Additionally, the same TCR has the potential to interact with nonself class I complexed with nonself peptides. How a single TCR interfaces multiple ligands remains unclear. Combinatorial synthetic peptide libraries provide a powerful tool to elucidate the rules that dictate how a single TCR engages multiple ligands. Such libraries were used to probe the requirements for TCR recognition by cloned CD8+ T cells directed against Ags presented by H-2Kb class I molecules. When H-2Kb contact residues were examined, position 3 of the peptides proved more critical than the dominant carboxyl-terminal anchor residue. Thus, secondary anchor residues can play a dominant role in determining the antigenicity of the epitope presented by class I molecules. When the four solvent-exposed potential TCR contact residues were examined, only one or two of these positions required structurally similar residues. Considerable structural variability was tolerated at the remaining two or three solvent-exposed residues of the Kb-binding peptides. The TCR, therefore, requires close physico-chemical complementarity with only a few amino acid residues, thus explaining why TCR/MHC interactions are of low affinity and degenerate.  相似文献   

19.
We determined that a pigeon cytochrome c-derived peptide, p43-58, possesses two anchor residues, 46 and 54, for binding with the I-Ab molecule that are compatible to the position 1 (P1) and position 9 (P9) of the core region in the major histocompatibility complex (MHC) class II binding peptides, respectively. In the present study to analyze each binding site between P1 and P9 of p43-58 to either I-Ab or T cell antigen receptor (TCR), we investigated T cell responses to a series of peptides (P2K, P3K, P4K, P5K, P6K, P7K, and P8E) that sequentially substituted charged amino acid residues for the residues at P2 to P8 of p43-58. T cells from C57BL/10 (I-Ab) mice immunized with P4K or P6K did not mount appreciable proliferative responses to the immunogens, but those primed with other peptides (P2K, P3K, P5K, P7K, and P8E) showed substantial responses in an immunogen-specific manner. It was demonstrated by binding studies that P1 and P9 functioned as main anchors and P4 and P6 functioned as secondary anchors to I-Ab. Analyses of Vbeta usage of T cell lines specific for these analogs suggested that P8 interacts with the complementarity-determining region 1 (CDR1)/CDR2 of the TCR beta chain. Furthermore, sequencing of the TCR on T cell hybridomas specific for these analogs indicated that P5 interacts with the CDR3 of the TCR beta chain. The present findings are consistent with the three-dimensional structure of the trimolecular complex that has been reported for TCR/peptide/MHC class I molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号