首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
通过改变煅烧过程中的气氛条件,以简单的固相法合成工艺获得了优异性能的LiNi0.8Co0.1Mn0.1O2(NCM811)材料,并探究了不同O2流量对样品的结构和电化学性能的影响。结果表明,当O2流量为0.1 L/min时,所合成的LiNi0.8Co0.1Mn0.1O2样品具有最低的阳离子混乱程度和较大的晶面间距。该样品在1 C、4.3 V下循环100次后的放电容量为174 mA·h·g?1,容量保持率高达98.3%;在更高的2 C倍率下循环100次后的保持率也达96.8%,并在高截止电压条件下表现良好。从实验结果还可得出,过低的O2流量不利于Ni2+转化为Ni3+,从而造成较高的阳离子混排度,而过高的O2流量则会使所合成LiNi0.8Co0.1Mn0.1O2材料的晶胞体积减小,不利于Li+的脱嵌。   相似文献   

2.
用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。  相似文献   

3.
由于钴价格的不稳定,无钴高镍LiNi0.9Mn0.1O2被认为是未来有潜力的正极材料,但是倍率性能弱和循环寿命短的问题阻碍了其商业化。通过Mo元素对无钴高镍LiNi0.9Mn0.1O2正极材料进行掺杂改性,延缓材料在充电阶段的有害相变,进而提升材料的倍率性能和循环稳定性。在1C倍率下,循环500圈后有着73.3%的容量保持率;即使在10C的高倍率下,依然有着152.05mAh/g的高放电容量。本研究为用于电动汽车的锂离子正极材料提供了新的选择。  相似文献   

4.
采用差示扫描量热仪(DSC)分析了不同正极材料LiNi0.7Co0.1Mn0.2O2和LiNi0.55Co0.1Mn0.35O2的热稳定性,结果表明,LiNi0.55Co0.1Mn0.35O2具有更好的热稳定性,说明镍含量越高,正极材料的热稳定性越差。通过扫描电镜(SEM)和X射线衍射仪(XRD)分别表征了DSC测试后两种正极材料的形貌和结构变化。其中LiNi0.7Co0.1Mn0.2O2材料经高温加热后其颗粒明显破碎,XRD结果表明正极材料在高温加热时发生了分解,产生了镍的氧化物。通过加速量热仪(ARC)测试电池热稳定性证明,正极材料的热稳定性差直接导致电池的热稳定性也较差。为了提高电池耐高温安全性能,必须选择热稳定性好的材料。  相似文献   

5.
高镍三元正极材料LiNi0.8Co0.1Mn0.1O2(NCM811)具有平台电位高、能量密度大、成本低等优点,在动力锂离子电池市场具有广阔的应用前景。然而,该材料存在阳离子混排、表面不稳定、热稳定性差等缺点,导致电池在使用过程中出现容量衰减快、循环性能差、安全性能低等问题,严重阻碍了其大规模应用综述了NCM811材料的结构特征、存在问题及改性研究进展,重点介绍了离子掺杂、表面包覆、结构设计等改性方法对其电化学性能的影响,并展望了其未来发展趋势和应用前景。  相似文献   

6.
表面活性剂在材料制备中具有控制形貌和改善性能的重要作用,本工作试图建立一种表面活性剂的亲水亲脂平衡(HLB)值与材料之间的关系。采用水热法制备LiNi0.8Co0.1Mn0.1(OH)2选用不同HLB数的表面活性剂诱导和控制正极材料的形貌,获得优异的性能。为了改性三元层状材料,分别使用不同HLB值的脱水山梨糖醇单硬脂酸酯(Span60)、十二烷基苯磺酸钠(SDBS)、十六烷基三甲基溴化铵(CTAB)和十二烷基硫酸钠(SDS)作为表面活性剂。四组材料的首次放电比容量分别为184.1 mAh/g、199.4 mAh/g、179.1 mAh/g和139.1 mAh/g。  相似文献   

7.
LiNi0.5Co0.2Mn0.3O2正极材料因能量密度高、循环稳定性好及安全性高而被认为是最有前途的高能量密度锂离子电池正极材料之一。然而,传统的常规碳酸酯基电解液的耐氧化性较差,导致LiNi0.5Co0.2Mn0.3O2正极材料在高电压条件下的容量快速衰减。在氟代碳酸乙烯酯(FEC)的基础上,研究了氟代线性碳酸酯(如二(2,2,2-三氟乙基)碳酸酯(TFEC)及甲基(2,2,2-三氟乙基)碳酸酯(MTFEC))替代碳酸二乙酯(DEC)在高电压下的循环稳定性。电化学测试结果表明,TFEC、MTFEC替代DEC后,4.5 V LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池45℃循环700圈后容量保持率分别从45.5%提高到72.5%、81.6%。线性扫描伏安法(LSV)、扫描电镜(SEM)、透射电镜(TEM)、X射线...  相似文献   

8.
曹博  王辉  吕鑫  王娟 《功能材料》2022,(6):6230-6236
P2型层状氧化物正极材料在充放电过程中容易产生Na+/空位有序性和P2到O2/OP4相位转变,导致多个充放电平台。低钠P2型层状氧化物在深度脱钠时容易造成材料结构不稳定,限制了可逆容量。这些缺陷造成P2型层状氧化物正极材料倍率性差和容量快速衰减。为了抑制Na+/空位有序性和相位转变,采用溶剂热法结合Li+掺杂(0,0.05%,0.1%,0.15%摩尔分数)制备出了无多个电压平台和无相位转变的P2型Na0.85Mn0.6Ni0.3Li01O2(NMNL-0.1)层状氧化物正极材料。NMNL-0.1正极材料在2 C电流密度下进行200次循环后的容量保持率为83%,而未掺杂锂的P2型Na0.85Mn2/3Ni1/3O2(NMN)样品的容量保持率为30%。在20 C电流密度下NMNL-0.1正极材料的放电比容量为62.5 mAh·g<...  相似文献   

9.
用去离子水将原始的LiNi0.8Co0.15Al0.05O2正极材料进行洗涤并分别在不同温度下处理相同的时间, 讨论了LiNi0.8Co0.15Al0.05O2正极材料结构、形貌以及电化学充放电性能的变化, 同时探讨了洗涤和热处理对材料结构、电化学充放电性能以及倍率性能影响的机理。XRD分析表明: 在洗涤和热处理之后, LiNi0.8Co0.15Al0.05O2正极材料的I(003)/I(104)比值以及晶胞体积均有变小; 傅里叶红外光谱分析表明: 在洗涤和热处理之后, LiNi0.8Co0.15Al0.05O2正极材料中形成了碳酸锂、镍化合物杂质及其相关变化。同时对洗涤和热处理前后LiNi0.8Co0.15Al0.05O2正极材料容量和倍率性能进行测试。容量测试结果表明: 原始样品以及处理后样品在30圈循环之后容量保持率分别为88.87%、 87.21%、85.43%和87.80%。  相似文献   

10.
为改善LiNi0.5Co0.2Mn0.3O2(NCM)锂离子电池三元正极材料的电化学性能,采用液相蒸发法将WO3包覆于NCM表面,得到NCM@WO3复合正极材料。通过XRD、SEM和TEM对NCM@WO3复合材料的结构和形貌进行表征,利用充放电测试、循环伏安及交流阻抗测试对其电化学性能进行表征。结果表明,当WO3包覆量为3wt%时,NCM@WO3复合材料性能最佳,在0.5 C下的首次放电比容量为179.9 mA·hg-1,不可逆容量损失降低至42.4 mA·hg-1,循环50圈后容量保持率为98.3%。WO3的包覆提高了锂离子扩散速率,减少了电极材料与电解液的副反应,NCM@WO3复合材料的电化学性能得到提升。   相似文献   

11.
In this study, a lithium-rich layered 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 nanotube cathode synthesized by novel electrospinning is reported, and the effects of temperature on the electrochemical performance and morphologies are investigated. The crystal structure is characterized by X-ray diffraction patterns, and refined by two sets of diffraction data (R-3m and C2/m). Refined crystal structure is 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 composite. The inductively coupled plasma optical emission spectrometer and thermogravimetric and differential scanning calorimetry analysis measurement supply reference to optimize the calcination temperature and heat-treatment time. The morphology is characterized by scanning and highresolution transmission electron microscope techniques, and the micro-nanostructured hollow tubes of Li-rich 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 composite with outer diameter of 200-400 nm and the wall thickness of 50-80 nm are synthesized successfully. The electrochemical evaluation shows that 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 sintered at 800 ℃ for 8 h delivers the highest capacity of the first discharge capacity of 267.7 mAh/g between 2.5 V and 4.8 V at 0.1C and remains 183.3 mAh/g after 50 cycles. The electrospinning method with heat-treatment to get micro-nanostructured lithium-rich cathode shows promising application in lithium-ion batteries with stable electrochemical performance and higher C-rate performance for its shorter Li ions transfer channels and stable designed structure.  相似文献   

12.
采用碳酸盐共沉淀结合高温固相焙烧法制备了富锂正极材料Li1.2Mn0.54Ni0.13Co0.13O2, 并用不同量的FePO4对其进行表面包覆改性。SEM分析结果显示, FePO4可以均匀地包覆在富锂材料的颗粒表面, XRD显示包覆后的材料很好地保持了原有的层状结构, 且FePO4呈非晶态。电化学测试表明改变FePO4包覆量可以调节该材料特定的电性能指标: FePO4包覆量为2wt% 的材料具有最大的首次充放电容量, 在0.05C下分别为325.9和258.4 mAh/g; FePO4包覆量为4wt%的材料兼具较高的放电容量和循环稳定性; 材料的首次充放电效率随着FePO4含量的增加而逐渐升高, FePO4包覆量为20wt%时, 首次充放电效率达到97.4%。  相似文献   

13.
Nickel-rich phases of the solid solutions, LiNi1−yCoyO2 (y=0.1, 0.2, 0.3), were synthesized by a sol–gel method with citric acid as a chelating agent. Various initial conditions were studied in order to find the optimal conditions for the synthesis of LiNi0.8Co0.2O2. The discharge capacity for the compound synthesized under an optimal synthesis condition of 800 °C for 12 h was found to be 187 mAh g−1 in the 1st cycle and it was 176 mAh g−1 after 10 cycles. The other nickel-rich phases, namely, LiNi0.9Co0.1O2 and LiNi0.7Co0.3O2 showed 1st-cycle discharge capacities of 144 and 163 mAh g−1, respectively. The corresponding capacity values were 140 and 159 mAh g−1 in the 10th cycle. Excess lithium stoichiometric phases, LixNi0.8Co0.2O2, where x=1.10, 1.15 and 1.20, resulted in decreased capacity. Structural and electrochemical properties of the synthesized compounds were compared with those of a commercial LiNi0.8Co0.2O2 sample. The effect of calcination temperature and duration, excess lithium stoichiometry and divalent strontium doping in LiNi0.8Co0.2O2 are described. Doping with strontium improved both the capacity and cycling performance of LiNi0.8Co0.2O2.  相似文献   

14.
采用无焰燃烧法在500℃反应3 h,然后分别在600、650、700和750℃二次焙烧6 h制备了尖晶石型Li1.02Ni0.05Mn1.93O4正极材料。结果表明,不同焙烧温度制备的Li-Ni共掺材料没有改变LiMn2O4的立方尖晶石结构,且随着焙烧温度的升高,颗粒尺寸变大,结晶性提高。二次焙烧温度为700℃的Li1.02Ni0.05Mn1.93O4单晶多面体晶粒正极材料具有{111}、{110}和{100}面,且电化学性能较优,在1 C倍率下初始放电比容量为108.2 mA·h·g?1,循环500次后的容量保持率为76.8%;在5 C下首次放电比容量可达到99.0 mA·h·g?1,1000次循环后,仍能维持72.1%的容量保持率;在10 C下仍显示出71.3 mA·h·g?1的首次放电比容量及经500次循环后86.4%的容量保持率。并且其具有较大的Li+扩散系数和较小的表观活化能。Li-Ni共掺LiMn2O4单晶多面体材料能够有效抑制Jahn-Teller效应,减小Mn的溶解及增加Li+扩散通道,使材料的晶体结构稳定,提高倍率性能和循环性能。   相似文献   

15.
用一种简单的方法制备了高性能的高电压尖晶石正极材料, 主要是调控正极材料中锂与过渡金属的摩尔比, 即通过Ni0.25Mn0.75(OH)2与Li2CO3进行高温固相反应制备了非化学计量比的Li1.05Ni0.5Mn1.5O4和化学计量比的LiNi0.5Mn1.5O4尖晶石型高电压正极材料。用扫描电子显微镜、X射线衍射、中子衍射、拉曼光谱、X射线光电子能谱以及循环伏安曲线对其形貌、晶体结构及元素价态和电化学性能进行了表征。研究发现, 非化学计量比的Li1.05Ni0.5Mn1.5O4中由于金属离子随机分布于16 d位置, 所以Ni/Mn阳离子无序化程度更高。非化学计量比的高电压正极材料具有更为优异的倍率性能, 并且在400次循环后比容量保持率高达91.2%。同时, 原位X射线衍射测试结果表明, 在充放电过程中非化学计量比的高电压正极材料发生连续单一的相转变, 可以提高晶体结构的稳定性。因此, 非计量比的尖晶石Li1.05Ni0.5Mn1.5O4正极材料在高能量密度的锂离子电池中具有更广阔的应用前景。  相似文献   

16.
通过机械球磨制备不同质量比的LCO/NCA混合正极材料,采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征其相结构和微观形貌,研究了这种材料的电化学性能。结果表明,两种正极材料球磨混合后其晶体结构均未改变,但是初始的NCA球形二次颗粒被打散,形成的纳米粒子弥散填充在LCO微米颗粒的孔隙之间,提高了正极材料的涂膜密度和二者之间的接触紧密性。当LCO:NCA=6:4时混合正极材料具有最佳的颗粒级配效果,其首次充放电效率最高,为92.4%;在10 C (1 C=140 mA·g-1)倍率下的比容量(136 mA·h·g-1)是0.2 C时的78.0%,出现了明显的协同增强效果;在1 C倍率下循环100次其容量保持率为89.8%,表现出优异的电化学性能。  相似文献   

17.
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号