首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Seven abiotic and biotic variables were tested to determine whether they influence the recruitment to age two of yellow perch, Perca flavescens (Mitchill), in waters of southern Lake Michigan, USA. Recruitment was analysed using a Ricker stock‐recruitment relationship that accounts for density dependency. Significant model variables tested individually and ranked by total variance explained included the abundance of sexually mature yellow perch, alewife, Alosa pseudoharengus (Wilson) and spottail shiner, Notropis hudsonius (Clinton). Variables found unrelated to recruitment or generally less explanatory included the abundance of round goby, Neogobius melanostomus (Pallus), mean water temperature, variation in water temperature and water clarity. The best‐fitting multivariable model explained 69% of the recruitment variability and included abundances of sexually mature yellow perch, alewife and spottail shiner. These results suggest that yellow perch recruitment in southern Lake Michigan is regulated in part by biotic interactions with other species of the near‐shore community, including alewife and spottail shiners, in addition to the abundance of reproductively mature yellow perch.  相似文献   

2.
Juveniles of non‐native alewife, Alosa pseudoharengus (Wilson), were collected in Lake Michigan in 1998, 1999, 2010, 2011 and 2013 to evaluate changes in energy content during a period of major ecosystem changes. Consistent with historical data, energy content of yearling alewife declined from late winter into late spring and was at its lowest point in June. Energy density and length‐adjusted, entire‐body energy were lower in 2010, 2011 and 2013 than in 1998 and 1999. Energy losses over the first winter in the lake were more severe for the 2010 year class (56% decrease) than for the 1998 year class (28% decrease). Alewife diets in late spring of 2010–2013 reflected the loss of major prey such as Diporeia spp. and a shift towards lower energy prey. The recent decline in energy content of yearling alewife can be linked to recent changes in productivity and abundance of key components of the lower food web of Lake Michigan following the dreissenid invasion.  相似文献   

3.
Dietary niches of fishes have traditionally been evaluated at the population level, with diet pattern central tendencies compared spatio‐temporally among habitats and populations. More recently, however, studies have emphasised the importance of within‐population diet variation and niche partitioning. Several studies have examined diets of young yellow perch (Perca flavescens) at the population level and have described an ontogenetic transition from zooplankton to benthic prey during the first year of life. However, independent of ontogenetic diet shifts, intrapopulation variation of young yellow perch diets remains largely unexplored. We quantified patterns of diet composition in age‐0 yellow perch collected from Saginaw Bay, Lake Huron, USA during July–October, 2009 and 2010. We observed substantial variation in diet composition among individuals across and within sites, but found relatively weak evidence indicating an ontogenetic diet shift. Zooplankton were the dominant prey for age‐0 yellow perch on most occasions, and individual diets were composed primarily of either zooplankton (e.g. Daphnia spp., Calanoida) or benthic (i.e. Chironomidae larvae, Chydoridae) prey. These patterns were not simply attributable to differences in prey availability and ontogenetic diet shifts, because a) not only diet composition, but also prey selectivity (Chesson's α) varied among sites and b) individual and spatial diet differences were evident independent of ontogeny. Within‐cohort differences in diet composition may be an important, but often overlooked, phenomenon with implications for cumulative trophic interactions and intracohort growth and survival among young fish.  相似文献   

4.
Abstract – Diets of adults of six important piscivorous fish species, black crappie Pomoxis nigromaculatus , largemouth bass Micropterus salmoides , northern pike Esox lucius , smallmouth bass Micropterus dolomieui , walleye Stizostedion vitreum , and yellow perch Perca flavescens were quantified in Spirit Lake, Iowa, USA from May to October in 1995–1997. Forty-one prey taxa were found in the diets of these species, including 19 species of fish. The most important prey taxa overall were yellow perch, amphipods and dipterans. Diets of northern pike and walleye were dominated by yellow perch. Largemouth bass diets included large percentages of both yellow perch and black bullhead Ameiurus melas . Smallmouth bass diets included large percentages of both yellow perch and crayfish. Black crappie and yellow perch diets were dominated by invertebrates, primarily amphipods and dipterans. There were pronounced differences in diets among species, among size classes within species and over time. Most of the dominant prey taxa we documented in the diets of piscivorous species were in accordance with previous studies, but a few deviated significantly from expectations. Many of the temporal diet changes were asynchronous among piscivorous species and size classes, suggesting different responses to common prey resources over time.  相似文献   

5.
Abstract – Introductions of large, non‐native, carnivorous fishes continue to occur worldwide and represent a substantial management concern to global biodiversity. One of the most recent non‐native fishes to successfully establish in North America is the northern snakehead (Channa argus), found in the lower Potomac River catchment. Dispersal of the northern snakehead throughout this system has been well documented since its original discovery in May 2004; however, little is known about the foraging habits of this species and its interactions with co‐occurring predators. Here, we quantify northern snakehead diet in comparison with the diets of naturalised largemouth bass (Micropterus salmoides), and native American eel (Anguilla rostrata) and yellow perch (Perca flavescens) collected from tidal freshwaters bordering Virginia and Maryland near Fort Belvoir, Virginia. Over 97% of northern snakehead gut contents were fishes, with fundulid and centrarchid species consumed most frequently. Dietary overlap was biologically significant only between northern snakehead and largemouth bass. Aquatic invertebrates were >10 times more common in native predator diets, reducing dietary overlap with northern snakehead. Ontogenic shifts in adult northern snakehead diet were also detected, which may be explained by optimal foraging rather than true prey specificity. Northern snakehead may be occupying a novel niche based on a piscivorous diet, therefore limiting competition with resident predators in the lower Potomac River. Further research into interactions between largemouth bass and northern snakehead is needed to inform management decisions and understand the ecological impacts of this non‐native species.  相似文献   

6.
Variation in the distribution and abundance of nearshore fishes is critical to understand food web processes and fishery management issues in Lake Michigan. This study characterised patterns in abundance of three common nearshore species, yellow perch Perca flavescens (Mitchell), round goby Neogobius melanostomus (Pallas) and alewife Alosa pseudoharengus (Wilson), in relation to spatio‐temporal, abiotic and biotic factors using gillnet sampling conducted across 5 years at multiple locations representing different substrates. Significant variations were observed in alewife and round goby catches between locations. A negative relationship between round goby and age‐0 yellow perch catch was observed, indicating potential competition between the two species. This study demonstrates that variability in nearshore fish communities can be driven by factors including substrate and interspecific interactions. Given the prominent role these species play in Lake Michigan's food web and thus their importance to fishery production, a thorough understanding of these factors is warranted.  相似文献   

7.
Diet overlap in a piscivore community   总被引:1,自引:0,他引:1  
Abstract— We examined prey selection of largemouth bass ( Micropterus salmoides ), smallmouth bass ( M. dolomieu ), and yellow perch ( Percaftavescens ) by comparing diet overlap in a small, unexploited lake in Michigan, USA from 1988 to 1990. Niche hypervolume principles were applied to diet data as a means of assessing diet space for each species and the community as a whole. Largemouth bass occupied the largest proportion of community diet space (70.2%), followed by smallmouth bass (44.2%), and yellow perch (21.7%). The majority of community diet space (58.8%) was occupied by a single species, and 41.2% was shared by ≥ 2 species. Diet overlap was assessed by measuring the amount of diet space of one species occupied by the other species. Our analyses demonstrated that diet partitioning in a three species piscivore community is reflected in different use of the prey resource by co-occurring species. Niche overlap of largemouth bass with smallmouth bass and yellow perch is strongly asymmetric, largely due to the ability of largemouth bass to effectively consume prey of terrestrial origin.  相似文献   

8.
Abstract – We assessed temporal dynamics and variation among species and age-classes in the diets of age 0 and age 1 piscivorous fish species in Spirit Lake, Iowa, USA during 1997 and 1998. Species included walleye Stizostedion vitreum , yellow perch Perca flavescens , smallmouth bass Micropterus dolomieui , largemouth bass Micropterus salmoides , black crappie Pomoxis nigromaculatus and white bass Morone chrysops. Thirty taxa were identified in diets, including 12 species of fish. We found dramatic differences in diets among species, among age-classes within species and over time. Walleye, largemouth bass, smallmouth bass and white bass were piscivorous at age 0. Black crappie began piscivory at age 1. Yellow perch also began piscivory at age 1, but fish were a very small fraction of age-1 diets. The primary temporal pattern, seen in several species and age-classes, was an increase in piscivory from spring to fall. This pattern was due to the lack of small, age-0 prey fish in spring. Although some patterns were evident, the taxonomic composition of the diets of all species was highly variable over time, making generalizations difficult. A surprising result was the absence of yellow perch in the diet of age-0 walleye, despite their abundance in Spirit Lake and prominence in diets of age-1 walleye and other age 1-piscivores. Age-0 yellow perch were consistently too large to be eaten by age-0 piscivores, which preyed primarily on invertebrates and smaller fish such as johnny darters Etheostoma nigrum and age 0 bluegill Lepomis macrochirus. This finding suggests that predator-prey interactions and resulting population dynamics may be quite different in Spirit Lake than in other systems dominated by walleye and yellow perch.  相似文献   

9.
Abstract –  To elucidate the performances of perch and ruffe in oligotrophic lakes, we carried out a field study in reoligotrophic Upper Lake Constance. Both these percids used the same habitat, albeit with different activity patterns. Interspecific competition for food was relevant only in summer when both species fed on zoobenthos. Even then, niche overlap was low, while intraspecific diet overlap was moderate to high throughout the season. Perch did not perform fixed, ontogenetic diet shifts, but used a wide range of prey. During spring and early summer, all size classes were planktivorous, then switched to benthivory and cannibalism in summer, and part of the population reverted to planktivory in autumn. Ruffe, by contrast, fed mainly on chironomid larvae and pupae throughout the year. It is suggested that in lakes of low productivity the euryphagous characteristics of perch, including cannibalism, provide a clear advantage over the benthivorous specialist ruffe in two ways: (i) it allows perch to switch to alternative prey types if one prey type becomes scarce; and (ii) reduces both intra- and interspecific competition for food.  相似文献   

10.
Abstract— The predator-prey behavioral interactions between two salmon species, coho salmon ( Oncorhynchus kisutch ) and chinook salmon ( Oncorhynchus tshawytscha ), and their prey species were examined under laboratory conditions. These behaviors were studied to determine the bases for prey selection by salmon in Lake Michigan and ultimately facilitate predictions on shifts or changes in salmon diets. Chinook and coho salmon captured all prey items in the open water portion of the aquarium, and they had similar attack behaviors. Average attack swimming speeds varied from 2.6 to 3.6 m/s, and average escape swimming speeds varied from 2.6 to 2.9 m/s. There were no significant differences in attack swimming speeds and escape swimming speeds. There was a significant difference in median reactive distances between the prey captured and those that escaped. There was no reactive distance (0.00 m) for 96% and 98% of the successfully captured prey by chinook and coho salmon, respectively. Only 4% and 10% of the unsuccessful attacks by chinook and coho salmon, respectively, had no reactive distance (0.00 m). Salmon would repeatedly attack a school and capture individuals separated from the school. Alewives, bloaters and fathead minnows were easy prey because they remained in the open water portion of the aquarium and stayed in schools until only a few individuals remained. The schooling behavior of spottail shiners and emerald shiners was an effective anti-predation tactic against salmon attacks. After some experience with yellow perch, salmon were reluctant to attack them and would often break off attacks on them. When coho salmon were presented with different proportions of bloaters and yellow perch, they significantly attacked and captured bloaters in preference to yellow perch.  相似文献   

11.
Abstract –  The diet overlap between young-of-the-year (YOY) perch and burbot in the pelagic zone of Lake Constance during spring and summer was investigated in relation to gape size limitation. Because perch were larger and grew faster than burbot during their early life history, perch overcame gape size limitation for various zooplankton taxa earlier than burbot. The interspecific diet overlap between perch and burbot decreased continuously until June, but increased slightly, when burbot became able to feed on large daphnids by the beginning of July. All zooplankton taxa could be found within perch stomachs by the middle of June, when perch overcame gape size limitation for large cladocerans. However, there was an increasing tendency for individual diet specialisation of perch, as the similarity between individual perch stomach contents decreased. In contrast, the similarity between individual burbot stomach contents remained at almost 50% until the end of August, indicating that all burbot rely on cyclopoid copepods during their entire pelagic life-history stage. Because by July YOY perch are more abundant by one order of magnitude in the pelagic zone than burbot, YOY perch may be more affected by intraspecific competition than by interspecific competition with burbot. Burbot, on the other hand, may evade strong competition with YOY perch by performing diel vertical migrations, thus being restricted to feed on migrating zooplankton prey.  相似文献   

12.
A shift towards oligotrophic conditions in Lake Michigan has led to concern that altered trophic pathways are leading to lower early life survival and recruitment for Lake Whitefish (Coregonus clupeaformis). This study evaluated ontogenetic shifts in age-0 Lake Whitefish diets and evaluated how feeding ecology and the amount of food eaten varied with prey abundance and composition at a site in southeastern Lake Michigan during 2014–2017. Although prey densities varied among years, cyclopoid copepods were overall the most abundant prey available. In turn, cyclopoids were the predominant prey item in diets each year, particularly for the smallest larval Lake Whitefish. However, there was a tendency for the importance of cyclopoids to decline somewhat in each diet index as fish grew and other prey such as calanoid copepods, Bosminidae, Daphniidae and/or chironomids increased in importance. High zooplankton abundance, especially high cyclopoid abundance, available to the small size groups of Lake Whitefish (<21 mm) in 2014 was associated with high food mass/fish, high number of zooplankton eaten/fish, and low incidence of empty stomachs compared with 2015–2017. As fish grew, the impact of food abundance on prey consumption diminished somewhat, indicating that the relationship between fish feeding ecology and the prey environment can change quickly with fish size during the early life period.  相似文献   

13.
Processes influencing fish recruitment are often highly complex and inherently difficult to understand. Invasive species may complicate recruitment through habitat and food web modifications resulting in competitive bottlenecks. Common carp Cyprinus carpio have been distributed worldwide, and their introductions have resulted in destructive effects on aquatic ecosystems and food web dynamics. Common carp are highly fecund, and high densities of age‐0 carp may occur in some years that may reduce invertebrate prey resources and adversely affect native age‐0 fishes. We used enclosures and field observations to examine potential effects of age‐0 common carp on growth and survival of age‐0 yellow perch Perca flavescens and bluegill Lepomis macrochirus. Yellow perch and bluegill were stocked into enclosures with and without common carp (31 fish/m3) using a substitution experimental design, and fish growth and survival and invertebrate prey resources were assessed. Common carp reduced growth of yellow perch but not bluegill and did not affect survival of either species in mesocosms. Next, we used patterns of common carp, bluegill, and yellow perch abundance and total length across 38 lake‐years to evaluate potential interspecific interactions in natural systems. Age‐0 common carp abundance was not negatively related to size or abundance of bluegill or yellow perch. However, adult common carp and age‐0 yellow perch abundance were inversely related, suggesting a potential competitive bottleneck. Thus, age‐0 common carp may suppress growth of yellow perch when prey is limited, but adult common carp may have larger effects than early life stages on native juvenile fishes.  相似文献   

14.
Freshwater growth of juvenile sockeye salmon (Oncorhynchus nerka) depends upon the quality and quantity of prey and interactions with potential competitors in the foraging environment. To a large extent, knowledge about the ecology of lake‐rearing juvenile sockeye salmon has emerged from studies of commercially important runs returning to deep nursery lakes, yet information from shallow nursery lakes (mean depth ≤ 10 m) is limited. We examined seasonal and ontogenetic variation in diets of juvenile sockeye salmon (N = 219, 30–85 mm) and an abundant potential competitor, threespine stickleback (Gasterosteus aculeatus; N = 198, 42–67 mm), to understand their foraging ecology and potential trophic interactions in a shallow Alaska lake. This study revealed that adult insects made up 74% of all sockeye salmon diets by weight and were present in 98% of all stomachs in Afognak Lake during the summer of 2013. Diets varied temporally for all fishes, but small sockeye salmon (<60 mm) showed a distinct shift in consumption from zooplankton in early summer to adult insects in late summer. We found significant differences in diet composition between sockeye salmon and threespine stickleback and the origin of their prey indicated that they also separated their use of habitat on a fine scale; however, the two species showed overlap in size selectivity of zooplankton prey. Considering that aquatic insects can be a primary resource for juvenile sockeye salmon in Afognak Lake, we encourage the development of nursery lake carrying capacity models that include aquatic insects as a prey source for sockeye salmon.  相似文献   

15.
Abstract  Environmental prey samples and stomach contents of bluegill Lepomis macrochirus (Rafinesque) were collected in spring and summer 2000 from two Nebraska Sandhill lakes. Watts Lake contained a low-density bluegill population, whereas Cozad Lake contained a high-density bluegill population. Bluegill diets from both lakes were compared to determine if bluegill prey preference differed between the two populations. The highest median per cent (by calories) of zooplankton in the diet was 1.3%; the remainder was macroinvertebrates. Watts Lake bluegills preferred (based on Manly's alpha) amphipods in spring and chironomids in summer. Cozad Lake bluegills did not show a strong preference (compared with Watts Lake) for any macroinvertebrates, but still utilized amphipods and chironomids during both seasons. Larger bluegills in Watts Lake preferred chironomids in summer, but Cozad Lake bluegills did not exhibit this relationship. The higher density Cozad Lake bluegill population appeared to be more opportunistic than the lower density Watts Lake population, but both preferred macroinvertebrates.  相似文献   

16.
Silver carp (Hypophthalmichthys molitrix) are a potential threat to native filter feeders and larval fish due to dietary overlap. To test for dietary overlap and selectivity, we collected diet samples from invasive silver carp and two native filter feeders (gizzard shad Dorosoma cepedianum and bigmouth buffalo Ictiobus cyprinellus), and river plankton samples at three sites on the Wabash River during the spring and summer of 2015. Contents of diet items were identified to major group and quantified. Diet proportions were compared among seasons, sites and species. Diet selectivity was calculated using the Manly–Chesson diet selectivity index. The results of our diet analysis showed that silver carp had significantly dissimilar diets among seasons and displayed dietary overlap with native fishes. We did not find a significant difference among sample sites. While silver carp diets overlapped with native fishes, the impact of this possible source of competition requires further study to confirm impacts on native fish abundances and body conditions.  相似文献   

17.
Abstract –  Life-long diet ontogeny and size-dependent intra- and interspecific diet partitioning of the native ruffe and perch and the introduced pumpkinseed, were studied in Lake Balaton. Estimated intraspecific diet overlap was high in ruffe, whereas in perch and pumpkinseed only the neighbouring size groups exhibited a high diet similarity. Interspecific diet overlap among size groups of the three species was moderate and ≥60% diet overlap occurred only in 13 size group pair variations out of the 429 analysed. The earliest developmental stages of the three species were planktivorous, whereas larger ruffe and some size groups of perch and pumpkinseed fed dominantly on chironomids. Adult perch and pumpkinseed consumed different littoral macroinvertebrates, while the largest perch were piscivorous. Although productivities of the two studied areas differ significantly, this had only little effect on the diet ontogeny and diet partitioning of the three species. Present results suggest that in Lake Balaton these three species effectively partition food resources throughout their life span.  相似文献   

18.
Abstract – Although introductions of prey species have the potential to significantly alter habitat use by top predatory fish, this aspect has rarely been directly quantified. Introduction of yellow perch (Perca flavescens), a littoral–pelagic prey species, to a small boreal lake previously dominated by littoral cyprinids provided a unique opportunity to examine how a change in forage base influenced habitat use by the sole top predator, lake trout (Salvelinus namaycush). We monitored lake trout pelagic and spatial distribution using acoustic telemetry before (2001) and after (2008) the introduction of perch to determine whether habitat use reflected a deeper, offshore prey community. After accounting for differences in water temperature and dissolved oxygen concentrations between years and the inclusion of a control lake, our data suggest that lake trout habitat use changed after the introduction of yellow perch. Lake trout, on average, were 1.4 m deeper (P < 0.01), reduced their use of littoral habitat by 55% (P = 0.03) and experienced a 71% decrease in home range size (P < 0.01), consistent with a greater offshore habitat overlap between predator and prey after the introduction of yellow perch. This study illustrates how introduced prey species may have a significant influence on habitat use by top predatory fish, while also showing the importance of using direct measurements to quantify behavioural changes.  相似文献   

19.
Abstract The difference in yellow perch, Perca flavescens (Mitchill), catch rates were evaluated for gillnets set on the bottom at 10‐ and 15‐m depths in southern Lake Michigan during June, July and August from 1989 to 2006. More yellow perch were captured in gillnets set at 10 m than at 15 m. Differences in water temperature were significant in explaining variation in catch rates, but differences in Secchi depth and wave height were not significant. These results suggest that yellow perch may associate with habitat based on water temperature during the summer and move in response to thermal changes. In addition, this portion of the lake lacks noticeable heterogeneous structural habitat features that normally influence yellow perch behaviour. Fisheries managers should consider sampling based on temperature in addition to depth or other habitat features when designing sampling protocols.  相似文献   

20.
Historically, yellow perch, Perca flavescens Mitchill held great recreational and commercial importance to the Lake Michigan fishery. Unfortunately, fluctuations in lake‐wide abundances in the past four decades created inconsistencies in catch. As adults, yellow perch have been commonly observed to swim great distances suggesting there is likely to be partitioning of the population within the lake. The objective was to determine whether population demographics of yellow perch in the Indiana waters of Lake Michigan were consistent with a single population. Seasonal population demographics of yellow perch collected from the Indiana waters of Lake Michigan in 2009, 2011 and 2012 were compared. Catch‐per‐unit‐effort of female yellow perch increased during later sampling periods across years. Similarly, total length of females and males increased 10% throughout the year. The proportion of females increased from 20% at the beginning of the survey period to 95% at the end. A few larval yellow perch were collected. These data suggest that Indiana waters of Lake Michigan are not a primary spawning area, rather these waters serve as a feeding or recovery area for post‐spawned yellow perch, particularly females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号