首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
张鑫  张妍  毕直磊  山泽萱  任丽江  李琦 《环境科学》2020,41(4):1594-1606
地表水硝酸盐污染已经受到世界研究者的广泛关注,中国地表水系统硝酸盐污染情况也不容乐观.为了解中国地表水硝酸盐分布、来源和转化机制,本研究系统收集了全国7大地区的71条主要河流硝酸盐数据,分析了地表水硝酸盐的分布及污染情况,并且通过硝酸盐氮氧同位素特征值揭示了不同地区、不同流域水体硝酸盐的主要来源.结果表明,我国7.83%河流硝酸盐质量浓度超过了标准限值(45 mg·L-1).牡丹江、海河和长江入海口的硝酸盐质量浓度超过90 mg·L-1,呈现重度污染现象.中国地表水δ15N-NO3和δ18O-NO3特征值范围分别为-23.5‰~26.99‰和-12.7‰~83.5‰.研究表明:东北、华中、华东地区地表水硝酸盐主要来源为生活污水,西北和华北地区地表水硝酸盐主要来源为生活污水、无机化肥和土壤有机质硝化,西南和华南地区地表水硝酸盐主要来源为无机化肥和生活污水.通过相关性分析得到中国地表水硝酸盐质量浓度与常住人口、废水排放量、农用氮肥施用折纯量和人均GDP呈正相关...  相似文献   

2.
利用2009~2010年北京城市生态系统地表水10处监测点水环境监测数据,评价了北京城市生态系统地表水硝酸盐污染状况及其空间分布,结合水化学因子相关关系分析了硝酸盐的主要来源.结果表明,北京城市生态系统地表水硝态氮(NO3--N)质量浓度为0.7~7.6 mg.L-1,其中,位于北京市东南部的地表水监测点(东便门和通惠河)水体NO3--N质量浓度为7.0~7.6 mg.L-1,显著高于上游8个监测点NO3--N质量浓度(P<0.01);Cl-质量浓度为14.8~86.0 mg.L-1,东便门、通惠河地表水监测点水体Cl-质量浓度为81.5~85.0 mg.L-1,约为上游其他8个监测点的2.3~5.8倍.东便门、通惠河地表水监测点水体电导率(EC)、SO24-质量浓度也表现出同NO3--N、Cl-相似的变化规律,表明东便门、通惠河两处地表水监测点附近存在明显的污染源.相关分析表明,地表水Cl-/Na+和SO24-/Ca2+呈明显的线性相关,说明地表水NO3--N污染来源比较单一;水体中NO3--N/Cl-及NO3--N的质量浓度状况说明北京城市生态系统地表水NO3--N污染来源主要是城市污水,包括污水处理厂的废水、垃圾沥出液及生活污水.未来北京市地表水治理应重点关注东便门、通惠河等东南部下游水体污染治理.  相似文献   

3.
鄱阳湖富营养化时空变化特征及其与水位的关系   总被引:3,自引:0,他引:3       下载免费PDF全文
为了研究鄱阳湖水体的富营养化状态与水位变化的响应关系,基于2009-2016年鄱阳湖15个长期监测点的调查数据,采用TLI(综合营养状态指数)法评价了鄱阳湖水体的富营养化状态,并应用主成分分析(PCA)探讨了鄱阳湖富营养化状态的时空变化特征及其与水位的关系.结果表明:①从年内变化来看,鄱阳湖除冬季(1月)处于轻度富营养化状态,其余3个季节均处于中营养状态,其中,夏季(7月)富营养化程度最低是由于其水位较高、换水周期快所致,冬季处于轻度富营养化是由于水位降低导致的营养盐浓度升高以及湖泊沉淀物的再悬浮和营养盐的释放;从年际变化来看,除2011年、2012年及2014年鄱阳湖处于轻度富营养化状态外,其余年份均处于中营养状态.②从空间上来看,鄱阳湖湖区整体处于中营养状态,空间差异不大,湖区中部东侧富营养化程度最高.③在年内季节变化上富营养化程度与水位呈负相关,富营养化的空间分布特征与水位关系较小.研究显示,鄱阳湖整体富营养化程度不高,但有向富营养化湖泊发展的趋势,建议通过控制湖区污染源来减轻其富营养化程度.   相似文献   

4.
九龙江流域地表水中硝酸盐来源辨析   总被引:9,自引:6,他引:9  
从九龙江流域遴选出2个典型小流域--仙都和五川小流域作为研究区,于2005年春季运用15N同位素示踪法对其地表水中硝酸盐来源进行研究.结果表明,仙都小流域地表水中溶解态总氮、硝氮和氨氮的浓度范围(以N计,下同)分别为1.47~5.31 mg/L、0.83~4.05mg/L和0.21~0.36mg/L,硝酸盐的δ15N值(以样品相对于标准大气N2的15N和14N比值的千分偏差表示)范围在2.5460-7.92%之间;五川小流域地表水中溶解态总氮、硝氮和氨氮的浓度范围分别为1.14~5.56mg/L、0.96~1.46mg/L和0.12~1.28mg/L,硝酸盐的δ15N值范围在-0.19‰~5.89‰之间.对照不同来源的硝酸盐δ15N特征值,结合研究区的农作物种植和施肥状况,得出如下结论:仙都小流域地表水中硝酸盐主要来自无机化肥与土壤有机氮,有机肥有一定的贡献;五川小流域地表水中硝酸盐的来源以无机化肥与土壤有机氮为主,有机肥的贡献很小;2个小流域地表水中硝酸盐的来源随时空变化而有差异,与当地农作物种类及农田时令密切相关.  相似文献   

5.
徐奇峰  夏云  李书鉴  王万洲  李志 《环境科学》2023,44(6):3174-3183
无定河流域作为黄河的一级支流,其水生态环境质量深刻影响着黄河流域生态保护与高质量发展.为识别无定河流域硝酸盐污染来源,对2019~2021年期间无定河的地表水样品进行了采集,探究了流域地表水体硝酸盐浓度的时空分布特征及影响因素,借助水化学方法、氮氧同位素示踪技术以及MixSIAR模型定性和定量地确定了地表水硝酸盐各来源及其贡献率.结果表明,无定河流域硝酸盐浓度存在显著时空差异.时间上,丰水期地表水NO-3-N浓度均值高于平水期;空间上,下游地表水NO-3-N浓度均值高于上游.地表水硝酸盐浓度的时空差异主要受降雨径流、土壤类型以及土地利用类型的影响.无定河流域地表水丰水期硝酸盐的主要来源是生活污水及粪肥、化学肥料和土壤有机氮,其贡献率分别为43.3%、 27.6%和22.1%,降水的贡献率仅占7.0%.不同河段地表水硝酸盐污染源贡献率存在差异,上游土壤氮贡献率明显高于下游,为26.5%;而下游生活污水及粪肥的贡献率明显高于上游,为48.9%.可为无定河乃至干旱及半干旱地区的河流硝酸盐来源解析和污染治理...  相似文献   

6.
堤垸是滨湖、滨江低洼地带的一种重要景观,农业面源污染已成为其主要的环境问题之一.为解析堤垸地区地表水硝酸盐污染来源,以洞庭湖屈原垸平江河段为研究对象,采用稳定同位素及水化学分析方法定性识别污染来源,并结合MixSIAR模型量化不同污染源的贡献率.结果表明:(1)硝态氮和氨氮是屈原垸平江河段地表水无机氮的主要赋存形态,时间上,硝态氮浓度在丰、枯水期间无显著差异(p>0.05),而丰水期氨氮浓度平均值高于枯水期;空间上,垸内硝态氮浓度显著低于垸外(p<0.01),而氨氮浓度显著高于垸外(p<0.01).(2)MixSIAR模型结果表明,化肥、土壤有机氮、水产养殖废水、粪肥和污水是研究区地表水硝酸盐的主要来源,对丰水期地表水中硝酸盐的贡献率分别为33.0%、32.6%、19.4%和11.7%,对枯水期的贡献率分别为26.7%、31.2%、21.5%和16.9%,而大气沉降对地表水中硝酸盐来源贡献较小,仅为3.5%.(3)研究区地表水硝酸盐转化过程主要以硝化作用为主,未发生明显的反硝化过程.研究显示,研究区地表水硝酸盐污染主要受农业面源污染的影响,污染物主要来源于土壤有机氮、...  相似文献   

7.
岩溶流域地表水和地下水硝酸盐来源定量识别   总被引:1,自引:0,他引:1  
选取岩溶地区花溪河流域典型农业区为研究对象,运用δ15N-NO3-18O-NO3-和δ18O-H2O同位素示踪技术和水化学分析方法,阐明了研究区地表水和地下水中硝酸盐的分布特征,并揭示其来源和形成过程,基于R语言下运行的贝叶斯模型(stable isotope analysis in R),对研究区水体中各种硝酸盐来源的贡献比例进行了定量识别.结果显示:受碳酸岩盐风化的控制,流域内地表水和地下水的水化学类型以HCO3-Ca型为主,硝酸盐在研究区水体中的空间分布特征受土地利用类型影响明显;在研究区水体硝酸盐形成过程中,硝化作用起主导作用,水体中的硝酸盐来源主要有化肥、降雨中的氨盐、土壤有机氮、粪便和污水,与地表水相比,地下水中硝酸盐受粪便和污水的影响较大;基于SIAR源解析模型分析,大气沉降、化肥、土壤有机氮和粪便污水对研究区地表水硝酸盐的贡献比例分别为3.97%、26.87%、36.80%和32.37%,对地下水硝酸盐的贡献比例分别为2.83%、13.96%、21.03%和62.18%.  相似文献   

8.
多年监测发现,5A级风景旅游区云台山水中总氮超标.为了摸清其不同形态氮含量水平并识别氮污染来源,本研究分别于丰水期(2021年9月、2022年6、7月)、平水期(2021年11月)和枯水期(2021年12月、2022年2月)采集云台山马鞍石水库表层和深层水及其上游河流表层水样品共58个,测定并分析了水化学参数(TN、NO3--N、NH4+-N和Cl-)的浓度和硝酸盐氮氧稳定同位素(δ15N-NO3-、δ18O-NO3-),同时利用SIAR同位素模型定量解析了水库及其上游河流中NO3-源的贡献.结果表明,马鞍石水库及其上游河流水中ρ(TN)、ρ(NO3--N)、ρ(NH4+-N)变化范围分别为1.86~6.4、1.40~...  相似文献   

9.
随着工农业的快速发展,地表水硝酸盐污染已成为黄土高原地区严重的环境问题之一.以黄土高塬沟壑区典型城郊流域砚瓦川为研究区,采用水化学分析方法和氮氧双稳定同位素技术,并结合SIAR模型,定量识别旱季和雨季研究区地表水硝酸盐不同污染源的贡献率,阐明不同污染源季节性差异的主要原因.结果表明,流域地表水无机氮主要以NO3--N和NO2--N形态存在,NO3--N和NO2--N雨季浓度平均值均高于旱季,而NH4+-N则呈现相反特征;流域内地表水硝酸盐的转化过程主要以硝化作用为主,雨季其主要来源是粪肥污水,而旱季主要为粪肥污水和土壤氮淋溶,铵肥次之;不同污染源对流域地表水硝酸盐的贡献比例具有显著的季节性差异,旱季与雨季城镇污水排放的贡献比例均为最高,分别为31.40%和65.66%,且雨季污水排放对NO3-的影响远高于旱季,夏季居民用水增加导致大量污水排放至流域内是引起这一现象的主要原因.  相似文献   

10.
为探寻西苕溪流域地下水中NO3--N的污染来源,对西苕溪流域地表水、地下水体的NO3--N污染状况进行了调查,并结合水化学与NO3--N同位素对其来源进行解析. 结果显示,西苕溪流域地表水的ρ(NO3--N)为1.07~3.45 mg/L,ρ(NO2--N)为0.15~0.35 mg/L;地下水中ρ(NO3--N)为3.24~15.31 mg/L,平均值达9.26 mg/L. 下游地区地下水的ρ(NO2--N)较高(0.26~4.25 mg/L),平均值达3.00 mg/L. ρ(NO3-)与ρ(Cl-)的关系显示,西苕溪地表水、地下水存在比较稳定的NO3--N输入来源. NO3--N同位素分析结果显示,地表水的δ15N为7.0‰~16.7‰,说明上游NO3--N主要来源于土壤有机氮的矿化,中下游则主要受到农业施用化肥与人类生活污水二者的共同影响;地下水的δ15N为14.3‰~27.1‰,说明调查区域内的地下水受人畜粪便和生活污水的影响可能更为强烈,另外,地下水中存在的反硝化作用也是造成地下水δ15N增高的原因.   相似文献   

11.
12.
太湖蠡河小流域水质的空间变化特征及污染物源解析   总被引:3,自引:0,他引:3  
为了解太湖流域河流中污染物的来源及时空变化特征,于2014年在太湖湖西区蠡河小流域开展水质监测,对从上游到下游的5个监测点汛期和非汛期水体中的总磷(TP)、氨氮(NH_4~+-N)、化学需氧量(COD)浓度的变化规律及其影响因素进行了研究.结果表明,监测期间流域水体中TP、NH_4~+-N、COD的浓度均值为0.176、1.075、10.626 mg·L~(-1),水质状况总体较好,未超过Ⅳ类水标准.从上游到下游TP、NH_4~+-N浓度逐渐升高,下游水质较差,均属于劣Ⅴ类水质;而COD浓度较低,未超过Ⅳ类水标准.受降雨的影响,污染物浓度在汛期略高于非汛期.在非汛期,污染物浓度从上游到下游逐渐升高,而在汛期,各监测点污染物浓度没有明显的变化趋势.随着居民地面积的增加,林地面积的减少污染物浓度逐渐升高.流域人口密度、畜禽养殖与水体中污染物浓度显著相关.蠡河流域农业面源污染的主要来源是生活源和畜禽养殖源.  相似文献   

13.
赤水河流域作为长江上游重要的水源涵养区,其生态环境状况及水环境质量备受关注。为了了解流域河水氮素来源,本次研究利用硝酸盐稳定同位素(~(15)N、~(18)O)示踪技术并结合流域土地利用类型空间分布分析了赤水河流域丰水期与枯水期干流及主要支流河水硝酸盐来源与转化过程。结果表明,流域水体NO_3~-浓度具有明显的时空变化,其中丰水期NO_3~-浓度要高于枯水期,喀斯特区域的NO_3~-浓度要高于非喀斯特区域。流域干、支流水体δ~(15)N-NO_3~-、δ~(18)O-NO_3~-季节性差异明显,丰水期支流δ~(15)N-NO_3~-差异较大,干流差异较小,而枯水期支流δ~(15)N-NO_3~-差异较小,干流差异较大。结合氮氧同位素和土地利用信息发现,丰水期支流NO_3~-受其土地利用方式的影响,其来源具有多样性;干流NO_3~-浓度则主要受支流混合作用影响。枯水期干流NO_3~-受流域人为活动影响较为显著,点源输入造成水体氮同位素分布范围较宽,主要来源表现为生活污水和土壤有机氮;而支流NO_3~-多表现为土壤有机氮来源,部分支流受流域内城镇影响,生活污水对河流NO_3~-贡献较大。流域水体氮污染控制应以农业面源氮流失为主,同时严格控制点源污染的输入。  相似文献   

14.
为了解重庆市长寿湖水体污染状况和环境风险,采集并分析了不同季节的表层水体重金属(Cr、Cu、Zn、As、Cd和Pb)浓度,探究长寿湖重金属时空变化和分布特征,进一步评估其污染水平和健康风险.结果表明,6种重金属均低于《地表水环境质量标准》(GB 3838-2002)Ⅰ类标准,但近年来呈现增加趋势,Cu、As和Pb增加趋势显著(P<0.05).不同重金属时空分布存在差异,在时间上,水体Cr和Cd在夏季较高,As和Zn在春季较高,Pb和Cu分别在秋季和冬季较高;在空间上,Cr、As、Cu、Zn和Pb总体在水库南部出水口、西北部龙溪河入水口及水库中部较高,Cd在水库北部的滞水区较高.长寿湖水体重金属整体为低污染水平,水体Cr和Cu存在轻度污染,其他重金属为清洁水平.饮水是水体重金属致癌及非致癌风险的主要暴露途径,水体Cr和As的健康风险值较高,分别为6.2×10-10 ~3.0×10-4和5.1×10-8 ~3.9×10-5,其对儿童和成人的总健康风险贡献率分别达到87.18%和87.20%(Cr)及12.73%和12.71%(As),对儿童和成人均存在一定的致癌风险.因此,需要重点关注长寿湖水体Cr和Cu的环境风险,以及Cr和As的健康风险,以期为长寿湖水体污染防治及环境质量的改善提供科学依据,合理开发利用水资源.  相似文献   

15.
蓟运河流域地表水质时空变化特征分析   总被引:13,自引:2,他引:13  
通过对不同时段和不同监测点环境监测数据的对比分析 ,研究蓟运河干流地表水质的时空变化特征 .结果发现 ,在空间上 ,蓟运河干流自上游至下游 ,地表水质总体上表现为不断恶化的趋势 ;在时间上 ,除了 NH4-N浓度有增加的趋势外 ,其它各项监测指标的浓度 ,1998年与 1995年和 1990年相比 ,没有明显的变化 .分析影响蓟运河地表水质变化的原因主要为 :土地利用结构变化 ,如耕地面积增加和林草地面积减少 ;城镇集中区大量工业废水和生活污水的排放 .  相似文献   

16.
乌梁素海是典型农业灌区退水型湖泊,其水生态环境保护对黄河流域生态保护具有重要意义.该研究通过开展乌梁素海流域农业排干和湖体硝酸盐的δ15N和δ18O分析,应用IsoSource同位素模型估算流域生产生活污水、土壤氮源、化肥和大气沉降的贡献率.结果表明:①湖区δ15N-NO3-和δ18O-NO3-值范围分别为-2.50‰~18.17‰和-12.02‰~45.09‰,其中夏秋两季δ15N-NO3-值偏正,冬季偏负,且秋季δ18O-NO3-值偏正.②春季湖水硝酸盐主要源于化肥和土壤氮源相关的农业活动,其贡献率为43.7%;夏季、秋季和冬季主要源于生产生活污水,贡献率分别为51.3%、38.8%和40.2%,其中夏季农业活动贡献率超过40%,大气沉降主要体现在秋季湖水中.研究显示:春季湖区硝酸盐来源主要集中于七排干和八排干的受水区域,以上区域应在春季着重加强农业面源污染控制;夏季和秋季湖区硝酸盐来源主要集中于五排干和七排干所处城乡区域,以上区域应强化城乡生活污水处理.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号