首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对添加微量Zr元素的Cu-0.8Cr-0.05Y(wt%)合金进行冷轧及时效处理,分析了各试样的显微组织、硬度及导电率,研究了热处理后该合金的时效行为.结果表明:适量Zr元素的加入,可细化合金的显微组织.Zr的加入可抑制合金时效过程中Cr析出相的长大,细化Cr析出相,提高合金强度,能有效的保持强度.适量添加量为0.15wt%~0.20wt%,经90%冷轧变形,在480℃时效60 min后,显微硬度可达198 HV,导电率达81%IACS,可获得优良的硬度与导电率匹配的综合性能.  相似文献   

2.
利用透射电镜和高分辨电子显微镜对Cu-0.36Cr-0.03Zr合金时效处理后的析出相进行观察分析。结果表明,经450℃时效4 h后,合金显微硬度达到峰值,析出相为具有花瓣状应变场衬度的面心立方Cr相,与基体完全共格;当时效时间延长至8 h时,面心立方Cr相转变为体心立方Cr相;经550℃时效2 h后,合金显微硬度达到峰值,合金中弥散析出相呈球状,通过衍射花样标定,析出相为体心立方Cr相和Cu4Zr相,且Cr相与Cu基体之间存在N-W位向关系。  相似文献   

3.
研究了时效处理后不同程度冷变形的Cu-1.5Ni-1.0Co-0.6Si合金的时效行为,利用光学显微镜和透射电镜分析了合金时效过程和显微组织,并对其孪晶及析出相进行了标定;同时研究了时效处理和冷轧变形量对合金导电率和显微硬度的影响,建立了导电率方程和时效析出动力学方程,探讨了合金的时效强化机制和时效析出动力学。结果表明:经过时效处理,Cu-1.5Ni-1.0Co-0.6Si合金的硬度和导电率均得到提升;Cu-1.5Ni-1.0Co-0.6Si合金经40%冷轧变形后,在500℃时效1 h后,其导电率为44%·IACS,显微硬度为255 HV0.1。Cu-1.5Ni-1.0Co-0.6Si合金在500℃时效时,合金析出相析出完成所用时间最短。  相似文献   

4.
采用非真空熔炼工艺制备Cu-Cr-Zr合金,研究了不同温度下时效时间对合金显微硬度和导电率的影响,并分析了在500℃时效时变形量和合金显微硬度与导电率的关系,用扫描电子显微镜(SEM)观察分析了材料的显微组织。结果表明:非真空熔铸的Cu-0.90Cr-0.18Zr合金950℃×1 h固溶后,经过适当的形变和固溶时效处理,显微硬度和导电率都显著增加,分别达到179 HV和79%IACS。时效后固溶在基体中的合金元素大量析出,析出相弥散分布。  相似文献   

5.
采用真空熔炼法制备Cu-0.3Zr-0.2Cr合金,将其热锻后在900℃进行固溶处理,随后进行轧制量30%与60%的冷轧处理,之后再对合金进行(400~550℃, 0~360 min)的时效处理;对时效处理后合金进行性能测试及显微组织观察。结果表明:固溶后的合金再经过60%的冷轧+450℃时效120 min后拥有较好的性能,硬度可达179HV,抗拉强度为467 MPa,导电率为88.5%IACS,伸长率为12.1%,此时合金主要存在Copper织构;在450℃时效360 min后合金的主要织构转变为Brass织构,织构的转变对合金的延展性有一定的影响;时效处理后,基体析出大量纳米尺寸的Cr相,这导致合金的强度与导电率大幅升高。  相似文献   

6.
Cu-Cr-Zr合金时效强化机理   总被引:5,自引:0,他引:5  
研究了不同时效工艺对Cu-0.7Cr-0.13Zr合金硬度、强度和导电率性能的影响,利用透射电镜分析合金时效后的微观形态和析出相。结果表明:在500℃时效30min析出相为Cu5Zr,硬度和导电率可达116.7HV和47%IACS。500℃时效6h后,硬度和导电率为140HV和76%IACS,强度达到峰值430MPa,弥散共格的析出相Cr是强度提高的重要原因,强化效应与采用共格强化机理计算的结果非常接近。合金在500℃时效8h硬度和强度仍具有135.6HV和410MPa,导电率为77%IACS,析出相仍较细小但与基体失去共格关系。  相似文献   

7.
采用真空电弧熔炼-水冷坩埚法制备CuCrZr三元合金,研究了Zr的添加方式及加入量对CuCrZr合金微观组织和性能的影响。结果表明,以Cu60Zr40中间合金的方式加入获得的CuCrZr合金组织和成分更均匀。与直接添加Zr制备的CuCrZr合金相比,采用中间合金的铜基体中熔入了更多的Cr和Zr。Zr含量在1%~4%范围内,随着Zr含量的增加,铸态和时效态CuCrZr合金的硬度均增加,导电率均减小;时效态下合金组织的共晶区域逐渐增大。经过时效处理,更多的Cr和Zr元素从Cu基体中析出,导致合金的导电率和硬度提高。  相似文献   

8.
采用高纯、高速N2(99.999%)流作为介质淬火处理在真空下固溶的粉末冶金Cu-Zr合金,然后时效处理.用HV、HB、XRD、TEM、SEM、EDS等来表征不同状态下的合金组织性能.结果表明:随着固溶时间的增加,合金的布氏硬度(HB)和导电率减小,而显微硬度(HV)增加:铜锆合金时效析出Cu2Zr,时效处理时间小于12 h时,合金的HB和导电率增加而HV减小,时效处理时间大于12 h时,合金的HB和HV减小而导电率增加,沉淀相长大.  相似文献   

9.
对冷轧态Cu-Cr和Cu-Cr-Sc合金进行时效处理,使用透射电镜、扫描电镜、光学显微镜、显微硬度计和涡流金属导电仪等研究了不同时效温度和时间对合金显微硬度、抗拉强度和导电率的影响。结果表明:480℃时效1 h后,Cu-Cr-Sc合金的综合性能较佳,其显微硬度达到161 HV0.1,导电率达到81.9%IACS,抗拉强度达到491 MPa;相较于480℃时效1 h的Cu-Cr合金,显微硬度提升了24.8%,抗拉强度提升了35.3%,导电率下降了12.9%,表明添加Sc可以显著提升Cu-Cr合金的力学性能,但是会略微降低导电率。微观组织分析表明Cu-Cr-Sc合金峰值时效后析出了Cr相,主要形貌为咖啡豆状和球状,析出相均为面心立方结构,与基体保持良好的共格关系。  相似文献   

10.
研究了不同固溶工艺条件对Cu-1.4Ni-1.2Co-0.6Si合金显微组织的影响,对合金固溶-时效后的显微硬度和导电率进行了分析,并采用电子衍射及透射电镜分析其显微组织。结果表明:合金铸态组织以等轴晶为主,热轧变形组织中存在许多细小析出相。热轧合金在固溶处理过程中基体变形组织发生再结晶和晶粒长大,且随着固溶温度升高,析出相固溶量增加,至975℃时,析出相粒子基本回溶到基体中。合金中的析出相与Cu-Ni-Si合金具有相同的结构和形貌,与Cu基体的位向关系为:[001]Cu//[110]p,(010)Cu//(001)p;[112]Cu//[32 4]p,(110)Cu//(2 11)p。合金最佳固溶-时效处理工艺为975℃×1.5 h+500℃×4 h时效,在此工艺条件下,合金显微硬度为232 HV,相对导电率为49%IACS。  相似文献   

11.
高强度高导电性铜-铬合金是一种接触导线用铜合金,含0. 79%Cr、0. 11%Zr、0. 06%La和0. 06%Y(质量分数)。研究了铸态、固溶态、时效态和冷轧后时效态铜-铬合金的显微组织、硬度和导电性能。固溶处理工艺为950℃×60 min水冷,时效温度为400~600℃,时效时间0~360 mm,冷轧变形量20%~80%。结果表明:铸态铜-铬合金的组织为黑色Cr相和含钇和镧的亮白色Cu5Zr相;固溶处理后Cu5Zr相基本回溶于基体,黑色Cr相细小弥散;经60%冷轧变形的合金晶粒沿轧制方向拉长,尺寸约为400μm;时效时间相同,随着时效温度的升高,合金的硬度和电导率均提高;与未经冷轧的时效态铜-铬合金相比,经冷轧变形并时效的合金达到最高电导率的时效时间较短,且冷轧变形60%随后500℃时效60 min的合金硬度明显高于未经冷轧、500℃时效360 min的合金;冷轧变形60%、500℃时效60 min的铜-铬合金中有高密度位错和位错缠结,弥散的纳米级第二相与基体保持共格关系,使合金强化。  相似文献   

12.
对上引连铸的Cu-0.45Cr-0.15Zr-0.05Mg合金进行固溶处理、冷拉拔以及时效处理工艺,研究拉冷拔形变及时效对材料力学性能、导电性能及组织结构的影响规律。结果表明:时效前的冷拉拔变形能提高Cu-0.45Cr-0.15Zr-0.05Mg合金的力学性能而保持较高的导电率;合金在950℃固溶1h后经70%冷拉拔变形和500℃时效4h,合金显微硬度和导电率分别达到了170HV,85%IACS;时效合金组织转变过程为:固溶体→G.P.区→Cr+Cu4Zr,析出相对位错的运动的阻碍是合金强化的重要机制。  相似文献   

13.
Cu-Cr-Zr-Sn合金的时效析出行为与性能   总被引:1,自引:0,他引:1  
采用TEM对Cu-0.22Cr-0.05Zr-0.05Sn合金不同形变热处理状态微观组织的演变以及时效过程中析出相的状态进行研究,并以此解释形变热处理过程中合金力学性能和导电性能的变化.结果表明,合金中存在2种析出相,分别是Cr相和Cu4Zr相.其中Cr相在时效过程中分别经历了固溶体、GP区、脱溶并与基体共格以及长大;而Cu4Zr相则以早期Cr析出相为核伴随析出,与基体半共格.由于析出相尺寸很小,且分布较为均匀,使合金具有很强的时效强化效果,经940℃固溶1h后冷加工至变形率为96%并在400℃时效4h,合金的抗拉强度和电导率可分别达到400 MPa和84%IACS.对于该合金,时效温度是决定合金综合性能的关键,而时效时间对综合性能的影响并不显著.  相似文献   

14.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、万能材料试验机、涡流金属电导仪等分析技术研究了30%、60%、90%变形量轧制与(450℃, 1 h)时效处理对Cu-1.0Cr-0.1Zr合金组织和性能的影响。结果表明:Cu-1.0Cr-0.1Zr合金经适当的冷变形和时效处理,其力学性能和导电性能都显著提高,在90%冷变形+(450℃, 1 h)时效后的综合性能最好,其抗拉强度、屈服强度、硬度、伸长率和导电率分别达到411.7 MPa、364.69 MPa、127.6 HV、25.72%和63.7%IACS。通过显微组织分析和理论计算可知,时效处理后,第二相的弥散析出是该合金获得高强度的重要原因,同时合金元素大量析出,使导电主体(Cu基体)中固溶原子减少,进而获得了较高的导电率。  相似文献   

15.
研究了室温冷轧、低温轧制、低温轧制+中间时效3种不同冷轧方式对时效态Cu-1Cr-0.15Zr合金显微组织和力学性能的影响。结果表明,低温轧制有助于时效态改善Cu-1Cr-0.15Zr合金的硬度,且经过中间时效处理后,时效态Cu-1Cr-0.15Zr合金的硬度和电导率会进一步提高;无论是冷轧态还是时效态,低温轧制+中间时效试样的抗拉强度都高于室温轧制和低温轧制试样,且峰时效态低温轧制+中间时效试样的电导率最高。室温轧制、低温轧制和低温轧制+中间时效试样的磨损体积分别为0.682、0.191和0.054mm~3,时效处理后的低温轧制+中间时效试样的耐磨性最好;其抗拉强度和耐磨性都高于室温轧制和低温轧制试样,这主要与合金中孪晶/基体片层间距较小以及弥散析出的细小壳状富Cr相有关。  相似文献   

16.
采用真空熔炼并经均匀化退火、热轧、固溶、冷轧和时效处理工艺制备Cu-xNi-3Ti-0.1Zr(x=2、4、6)合金,通过X射线衍射仪、光学显微镜和扫描电镜对合金的析出相进行表征和分析。结果表明,Ni的加入能够显著提高合金的导电率,且对其硬度的影响也同样显著。Ni在Cu-xNi-3Ti-0.1Zr合金中主要以CuNiTi相存在;Ni的加入导致合金中大量CuNiTi相的析出,降低了基体中Ti的固溶度,使合金的晶格畸变程度降低,从而提高了合金的导电率。但随着Ti的析出,Ti对合金的强化效果减弱,从而导致合金的硬度降低。在本试验工艺下,Cu-xNi-3Ti-0.1Zr(x=2、4、6)合金在500 ℃时效的峰值硬度分别为295、231、201 HV0.5。  相似文献   

17.
研究了时效时间对Cu-0.2Be-0.5Co合金显微硬度和导电率的影响,采用透射电子显微镜(TEM)观察分析了微观组织随时效时间的变化。结果表明:Cu-0.2Be-0.5Co合金在460℃时效条件下显微硬度和导电率随时效时间的变化规律基本一致:时效初期(0~2 h)急剧升高,时效中期(2~4 h)缓慢增加,时效后期(4~8 h)趋于稳定。析出相结构为Be12Co化合物相,与Cu基体的位向关系为[112]α∥[011]Be12Co。析出相的大量析出和弥散分布导致合金硬度的显著增加,由固溶态的97 HV0.1增加至时效2 h后的243 HV0.1;铜基体晶格畸变程度的恢复导致合金导电率显著增加,由固溶态的32.3%IACS增加至时效2 h后的57.1%IACS。在试验范围内,Cu-0.2Be-0.5Co合金经950℃×1 h固溶+460℃×2 h时效处理后综合性能优良。  相似文献   

18.
研究了时效处理对Cu-3Ti-3Ni合金组织与性能的影响。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)对Cu-3Ti-3Ni合金的组织和析出相进行了表征,并对其硬度、导电率和弹性模量进行了测试。结果表明:Cu-3Ti-3Ni合金时效处理后析出Ni_3Ti及β'-Cu_4Ti相。随着时效时间的延长,部分合金元素回溶于Cu基体,连续的亚稳定β'-Cu_4Ti相向不连续的稳定Cu3Ti相转变。Ni_3Ti相及β'-Cu_4Ti相的析出减少了Ti原子的固溶,导致导电率升高。经过合适的时效处理,Cu-3Ti-3Ni合金中的Ni_3Ti相及连续的亚稳定β'-Cu_4Ti相析出完全,导致硬度升高,但时效处理对合金弹性模量影响不大。在本实验范围内,Cu-3Ti-3Ni合金的最佳时效处理工艺是300℃时效2 h后炉冷,随后450℃时效7 h炉冷。Cu-3Ti-3Ni合金的HV硬度、导电率及弹性模量分别是1.83 GPa、31.34%IACS(国际退火铜标准)及148.62 GPa。  相似文献   

19.
通过单辊旋淬快速凝固技术制备Cu-3.2Ni-0.7Si(wt%)合金薄带。研究了不同旋淬速度(凝固速度)和时效处理对合金微观组织、导电率和力学性能的影响。结果表明,随着凝固速度的增大,铸态合金的晶粒明显细化,导电率降低,显微硬度和拉伸强度升高。铸态合金在同一温度进行时效处理,随着时效时间的增加,合金的电导率呈升高趋势,而合金的显微硬度和拉伸强度先升高后降低。铸态合金的导电率随凝固速度的增大而降低是基体晶格畸变程度增大所致;合金时效处理后导电率升高是由于第二相析出明显消除晶格畸变的结果。铸态合金显微硬度和拉伸强度随凝固速度增大而升高是细晶强化的结果;时效处理后,合金的显微硬度和抗拉强度明显提高是第二相强化的结果,而过度时效导致显微硬度和拉伸强度降低的主要原因是第二相的粗化团聚所致。  相似文献   

20.
采用真空熔炼制备了Cu-14Fe-C合金,研究了热处理对合金显微组织、力学性能和导电性能的影响规律。结果表明:Cu-14FeC合金在950℃固溶处理后部分树枝状相发生溶解、数量减少,大量铁溶入铜基体中,合金硬度和导电率显著降低;进一步时效处理后基体上析出大量细小的含铁相颗粒,弥散强化作用使Cu-14Fe-C合金硬度有所提高;含铁相的析出使基体对电子的散射作用大大减弱,合金导电率显著提高,并且高于铸态合金。随着时效温度从400℃提高到550℃,合金硬度和导电率都不断升高,但接近550℃时升高的趋势显著减缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号