首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
高岭土经乙酸钾插层处理后,与γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)水解液混合研磨,制备了偶联剂表面处理的插层型高岭土,并与丙烯腈-丁二烯-苯乙烯共聚物(ABS)进行熔融共混制得ABS/插层型高岭土复合材料。采用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)对高岭土改性效果进行表征,采用扫描电子显微镜(TEM)、热失重分析仪(TG)、拉伸试验等研究了ABS/改性高岭土复合材料的微观形貌、热、力学性能。结果表明,改性高岭土层间距为1.42 nm,插层率为79.7%,改性高岭土加入量为3%、7%时,片层较均匀分散在ABS基体中;当改性高岭土的填充量为7%时,复合材料的断裂伸长率比纯ABS增加157.1%,热分解温度也有所提高。  相似文献   

2.
以二甲基亚砜(DMSO)改性的高岭土作前躯体,采用熔融插层法制备聚丙烯(PP)/纳米有机高岭土复合材料.采用FTIR、XRD、SEM等方法对其结构与形态进行表征,结果表明:聚丙烯已成功进入到高岭土片层间,层间距扩大到1.123 nm,插层率为73%;性能测试结果表明:改性高岭土的加入在不同程度上提高了PP的冲击性能和热性能.  相似文献   

3.
采用硅烷偶联剂KH550、异佛尔酮二异氰酸酯(IPDI)、十八胺(ODA)对高岭土表面进行三步干法改性,制备出有机高岭土(Kaolin-O),然后将其与聚丙烯(PP)进行熔融共混制备出PP/Kaolin-O复合材料。用FTIR对改性高岭土进行结构表征,并用TEM、SEM、XRD和DSC对复合材料的微观形貌和结晶行为进行研究,通过拉力测试研究了复合材料的力学性能。结果表明:有机物成功接枝到高岭土表面,当Kaolin-O用量低于5phr时,Kaolin-O片层均匀分散在PP基体中;Kaolin-O的加入,促进了聚丙烯β结晶成核,复合材料的结晶度均比纯PP低;Kaolin-O用量为3 phr时,复合材料的拉伸强度、断裂伸长率比PP分别提高了37%、18%。  相似文献   

4.
采用液态三元乙丙橡胶(LEPDM)对高岭土进行表面改性,然后与聚丙烯(PP)熔融共混,制得了PP/改性高岭土复合材料,采用氧指数测定仪、熔体流动速率仪(MFR)和扫描电子显微镜(SEM)等对比分析了高岭土和改性高岭土对PP力学性能、加工性能、阻燃性能和微观形貌的影响。结果表明:高岭土及改性高岭土均会改善PP的力学性能、加工性能和阻燃性能。当填料含量相同时,PP/改性高岭土复合材料的拉伸强度、缺口冲击强度和加工性能均优于PP/高岭土复合材料,PP/高岭土复合材料的阻燃性能和弹性模量均优于PP/改性高岭土复合材料。当改性高岭土质量分数为10%时,PP/改性高岭土复合材料的缺口冲击强度和MFR均达到最大,分别为12.63 kJ/m2和1.75 g/10 min。  相似文献   

5.
采用固相法对黏土进行有机化插层改性制备有机黏土,再通过熔融插层法制备聚丙烯(PP)/有机黏土纳米复合材料。有机黏土在PP中的层间距由原来的4.07 nm扩大到5.84 nm,PP分子链成功插入到固相法改性的黏土中,形成纳米复合材料。PP/有机黏土纳米复合材料的结晶温度由112.9℃提高119.6℃,熔融过程、熔点及结晶度没有明显变化。PP/有机黏土纳米复合材料的力学性能优于PP/钠基黏土复合材料,有机黏土的质量分数在3%-5%时,纳米复合材料的力学性能最佳。  相似文献   

6.
采用熔融插层法制备了聚丙烯/有机改性蒙脱土(PP/OMMT)纳米复合材料,研究了OMMT用量对PP基体力学性能和阻燃性能的影响,利用透射电镜(TEM)分析了OMMT在PP基体中的分散性。结果表明:OMMT的加入有助于提高PP基体的力学性能和阻燃性能;熔融插层法可以使PP的大分子链有效地插入OMMT的片层之间;随着OMMT用量的增加,其在PP基体中的分散性变差。  相似文献   

7.
采用三步插层取代法制备了硫脲插层高岭土插层复合物(TU-Kaol),通过熔融共混法将TU-Kaol添加到聚丙烯(PP)中,通过锥形量热和万能试验机测试PP/TU-Kaol复合材料的阻燃性能和力学性能。结果表明,当TU-Kaol含量为1.5 %(质量分数,下同)时,PP/TU-Kaol 复合材料的最大热释放速率从纯PP的1 474 kW/m2下降至1 100 kW/m2;拉伸强度从纯PP的35.3 MPa提高至39.8 MPa,表明TU?Kaol对PP的阻燃和力学性能具有显著效果。  相似文献   

8.
以钛酸酯偶联剂(NDZ-105)改性的高岭土为填料、马来酸酐接枝的聚丙烯(PP-g-MAH)为相容剂,与聚丙烯(PP)熔融共混制备复合材料,测定了复合材料的力学性能,并通过X射线衍射(XRD)、红外光谱(Fr-IR)、热失重分析(TG)、扫描电镜(SEM)等手段研究其结构.结果表明,NDZ-105分子包覆到高岭土颗粒表面,有效改善了高岭土与PP基体的相容性;改性高岭土在PP基体中起到异相成核作用,并诱导PP基体产生β晶型;与纯PP及PP/未改性高岭土复合材料相比,PP/改性高岭土复合材料的拉伸强度、冲击强度、屈服强度、弹性模量、维卡软化温度及外推起始失重温度均明显提高,分别增加了7.6%、31%、21%、89.3%、8.4℃及97℃.  相似文献   

9.
针对聚合物/水滑石(LDH)纳米复合材料传统制备方法中存在的问题,采用球磨改性工艺制备聚丙烯(PP)/LDH纳米复合材料以期改进填充物在基体中的剥离和插层,重点研究了PP/LDH纳米复合材料的结构、力学性能。XRD分析表明,球磨工艺在对LDHs进行有机插层改性的同时实现了PP分子链的插层;所制备的PP/LDHs纳米复合材料其综合力学性能明显优于常规方法制备的复合材料。  相似文献   

10.
采用熔融共混法制备了聚丙烯(PP)/纳米碳酸钙(nano-CaCO3)复合材料,研究了nano-CaCO3表面改性前后对复合材料力学性能的影响,利用扫描电镜(SEM)分析了nano-CaCO3表面改性前后在PP基体中的分散性。结果表明:加入量较小时,nano-CaCO3表面改性与否对复合材料的力学性能和在PP基体中的分散性基本没有影响;加入量较大时,表面改性nano-CaCO3使复合材料具有更好的力学性能,并且在PP基体中的分散性及其与PP基体间的界面黏结性也更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号