首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very thin Fe films have been grown by molecular beam epitaxy on Ge(001), GaAs(001) and ZnSe(001) substrates, under identical preparation conditions. The electronic and magnetic properties of such interfaces have been studied, as a function of the Fe thickness, by means of spin resolved inverse photoemission. From the spin dependence of Fe empty states, we observe the onset of room temperature ferromagnetism to occur at a Fe thickness as low as three monolayers (ML) for Fe/Ge, while 5 and 8 ML have been found for Fe/GaAs and Fe/ZnSe, respectively.  相似文献   

2.
We report on the nanometer scale morphology of CoO thin films grown on top of Fe(001) substrates from the early stages of interface formation (few atomic layers), and on the surface topography of Fe/CoO/Fe(001) layered structures. The growth of the CoO films is dominated by formation of islands up to about 5 nominal atomic layers, then it proceeds in the layer-plus-island regime. The surface topography of thin Fe films grown on top of the CoO/Fe systems is strongly influenced by the morphology of the latter. Moreover, we observe a strong relationship between the growth mode and the chemical interactions at the CoO/Fe interface, since thick layers of iron oxides develop only below the CoO islands, as an effect of the proximity between Fe and Co atoms. We finally discuss possible implications of our observations on the magnetic properties of these layered magnetic structures.  相似文献   

3.
T. Bernhard 《Surface science》2006,600(9):1877-1883
The structure and magnetism of thin epitaxial Fe layers grown on Cu(0 0 1) is investigated by grazing scattering of fast H and He atoms. Information on the atomic structure of the film and substrate surfaces is obtained by making use of ion beam triangulation with protons. The magnetic behavior is studied via the polarization of light emitted after capture of spin-polarized electrons into excited atomic terms during scattering of He atoms. For the formation of bcc(1 1 0)-like Fe films at higher coverages, we detect differences in structural and magnetic properties for room and low temperature growth. We suggest that the crystalline structure depends on the film morphology and that Cu impurities affect the magnetic properties.  相似文献   

4.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

5.
Thin films of Fe-rich Fe–18 at% Ge and Fe–25 at% Ge were deposited by a pulsed laser ablation technique on single crystal NaCl substrates at room temperature to study phase evolution using transmission electron microscopy. As-deposited films contain nano-scale clusters embedded in a featureless matrix. Quadrupole mass spectrometric observations of the laser-ablated plume show the presence of charged clusters. During in situ heating of the films, the fine-scale clusters grow and profuse crystallization to a bcc FeGe solid solution occurs. For Fe–25?at% Ge thin film, crystallized bcc grains undergo two ordering transitions, viz. bcc?→?B2?→?DO3, during subsequent cooling to room temperature. However, in the case of Fe–18 at% Ge thin film, crystallization leads to formation of the disordered bcc phase. Growth morphologies of the crystals formed during heat treatment indicate faceted growth form, which has been explained by using Jackson's interface model.  相似文献   

6.
We describe the construction and operation of an ultrahigh-vacuum system devoted to the study of layered magnetic nanostructures. The apparatus includes two growth chambers, where specimens nanostructured along the direction of growth (heterostructures, nanometric and subnanometric thin films and multilayers) are deposited either by molecular beam epitaxy or pulsed laser deposition, and a measurement chamber, where they are analyzed in situ by a variety of electron spectroscopies. Magnetic characterization is obtained by spin resolved inverse photoemission spectroscopy and magneto optical Kerr effect technique. Vacuum transfer towards other experimental facilities is also available. As examples of application, results from half metallic magnetic oxides, such as magnetite (Fe3O4) and manganite (La2/3Sr1/3MnO3) thin films, and ferromagnet/semiconductor interfaces (Fe/Ge(0 0 1)) are also reported.  相似文献   

7.
B.J. Mrstik 《Surface science》1983,124(1):253-266
The initial stages of growth of epitaxial Ge overlayers on the GaAs(100) surface have been studied by LEED and AES on overlayers from 0.1 monolayers (ML) to 10 ML in thickness. It is found that a coverage of about 0.2 ML converts the initial clean surface reconstruction into a single domain (1 × 2) reconstruction with a surface atomic geometry very similar to that of clean Ge. Further growth does not significantly change the arrangement of atoms at the surface. Growth from 1 to 4 ML proceeds by a double layer growth mechanism which maintains the single (1 × 2) domain. Auger measurements indicate that the growing surface has a 12 ML As enrichment, and that the interface is not abrupt, but has a mixed GeGa or GeAs transition layer.  相似文献   

8.
Ultrathin films, bcc Fe(001) on Ag(001), fcc Fe(001) on Cu(001) and Fe/Ni(001) bilayers on Ag, were grown by molecular beam epitaxy. A wide range of surface science tools were employed to establish the quality of epitaxial growth. Ferromagnetic resonance and Brillouin light scattering were used to extract the magnetic properties. Emphasis was placed on the study of magnetic anisotropies. Large uniaxial anisotropies with easy axis perpendicular to the film surface were observed in all ultrathin structures studied. These anisotropies were particularly strong in fcc Fe and bcc Fe films. In sufficiently thin samples the saturation magnetization was oriented perpendicularly to the film surface in the absence of an applied field. It has been demonstrated that in bcc Fe films the uniaxial perpendicular anisotropy originates at the film interfaces. In situ measurements indentified the strength of the uniaxial perpendicular anisotropy constant at the Fe/vacuum, Fe/Ag and Fe/Au interfaces asK us = 0.96, 0.63, and 0.3 ergs/cm2 respectively. The surface anisotropies deduced for [bulk Fe/noble metal] interfaces are in good agreement with the values obtained from ultrathin films. Hence the perpendicular surface ansiotropies originate in the broken symmetry at abrupt interfaces. An observed decrease in the cubic anisotropy in bcc Fe ultrathin films has been explained by the presence of a weak 4th order in-plane surface anisotropy,K 1S=0.012 ergs/cm2. Fe/Ni bilayers were also investigated. Ni grew in the pure bcc structure for the first 3–6 ML and then transformed to a new structure which exhibited unique magnetic properties. Transformed ultrathin bilayers possessed large inplane 4th order anisotropies far surpassing those observed in bulk Fe and Ni. The large 4th order anisotropies originate in crystallographic defects formed during the Ni lattice transformation.  相似文献   

9.
Multilayered films with artificial superstructures were prepared by alternately depositing Fe and Nd in ultrahigh vacuum. The magnetic properties are studied from57Fe Mössbauer spectroscopy. The hyperfine field in Fe layers and the direction of Fe magnetic moments depend on the Fe and Nd layer thicknesses. For films with certain Fe and Nd layer thicknesses, the direction of Fe magnetic moments is in-plane at 300 K but changes to be perpendicular at low temperatures. The direction of Fe magnetic moments is discussed in relation with the magnetization of interface Nd atoms.  相似文献   

10.
研究了非晶态Sm-Fe和Sm-Co薄膜在1.5—300K的磁性。发现Sm-Fe薄膜中Fe原子磁矩取向存在分散性,Sm-Co薄膜中Co原子有效磁矩随Sm含量的变化与Nd-Co非晶薄膜很相似。决定了Sm-Fe薄膜具有散铁磁结构,Sm-Co薄膜为共线铁磁性结构。Sm原子磁矩≈0。报道了这两个非晶合金系列的矫顽力Hc与成份和温度的依赖关系。发现Sm-Fe薄膜的Hc较高于Sm-Co的值;前者随Sm含量增加而急剧上升,并随温度升高而陡降;后者的Hc在Sm含量≈43at%有极大值,并以指数形式随温度升高而减小。发现低温范围内磁化强度随温度变化与自旋波激发和Stoner激发都有关系。 关键词:  相似文献   

11.
张鑫鑫  靳映霞  叶晓松  王茺  杨宇 《物理学报》2014,63(15):156802-156802
采用磁控溅射技术在Si衬底上以350?C沉积14 nm的非晶Ge薄膜,通过退火改变系统生长热能,实现了低维Ge/Si点的生长.利用原子力显微镜(AFM)和拉曼(Raman)光谱所获得的形貌和声子振动信息,对Ge点的形成机理和演变规律进行了研究.实验结果表明:在675?C退火30 min后,非晶Ge薄膜转变为密度高达8.5×109cm-2的Ge点.通过Ostwald熟化理论、表面扩散模型和对激活能的计算,很好地解释了退火过程中,Ge原子在Si表面迁移、最终形成纳米点的行为.研究结果表明用高速沉积磁控溅射配合热退火制备Ge/Si纳米点的方法,可为自组织量子点生长实验提供一定的理论支撑.  相似文献   

12.
Fe(x)/Mo(y), multilayered thin films (MLF) with y=7.0 nm and x=0.7, 1.3, 2.6, 3.6, 13.0 nm were fabricated by radio frequency (RF) sputtering. X-ray diffraction evidences that these films have a good periodicity and bcc structure for both Fe and Mo layers. Mössbauer spectra at room temperature (RT) are used to investigate the structure and the local magnetic properties of the interfaces between Fe and Mo layers. It is found that the interfaces present alloying features, i.e. the Fe atoms are randomly substituted by Mo atoms. Magnetic anisotropy which forces magnetic moments to lie in the film plane and reduced magnetic moments in interface region were observed. The specific magnetization of the films exhibits a BT3/2 dependence with very large values of B which can be attributed to the distribution of exchange interaction in the interfaces.  相似文献   

13.
The growth of ultrathin Fe films of various coverages on Ge(1 1 1) at room temperature using molecular beam epitaxy (MBE) was studied via X-ray photoelectron diffraction (XPD or XPED) together with low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). All experimentally observed XPD patterns suggested local order structures of the Fe layers for all thicknesses studied. The short-range order of the resulting structures was found to be enhanced for thinner layers whereas the long-range order was gradually lost with increasing Fe thicknesses. At a very low coverage of 0.8 Å Fe and Ge tend to react to the partly ordered structure in which Fe atoms were located in local environments similar to those for higher Fe coverages. Comparison of theoretical and experimental XPD patterns, along with XPS results, showed that intermixing between Fe and Ge occurred during the pseudomorphic growth with a stacking fault near the interface for all Fe coverages under study. Nevertheless, small percentage of domains without the stacking fault was also found to coexist with those with the stacking fault by performing a quantitative analysis of a reliability factor R of the Fe2p pattern for 5.4 Å. The orientation changes of the Ge2p and Ge3d XPD patterns with Fe thickness were unambiguously explained in terms of their different dependencies on the overlayer thickness due to the different inelastic mean free path lengths used in the simulations. Also, Fe got increasingly enriched in the grown layers with increased Fe coverage. The resulting structures and intermixing are discussed in detail.  相似文献   

14.
The electric, magnetic, and magneto-optical properties of thin (50–100 nm) GaSb:Mn, InSb:Mn, InAs:Mn, Ge:Mn, Ge:Fe, Si:Mn, and Si:Fe layers with a Curie point up to 500 K, obtained by laser plasma deposition in vacuum in the case of strong supersaturation of a solid solution with a 3d impurity, have been experimentally investigated.  相似文献   

15.
We present a review of theoretical and experimental results for tunable microwave band-stop filters, band-pass filters, phase shifters, and a signal to noise enhancer, all based on a microstrip geometry and using a variety of magnetic thin films and layered structures. These devices are compatible in size and growth process with on-chip high-frequency electronics. For devices based on metallic ferromagnetic films of Fe and Permalloy, the operational frequency ranges from 5 to 35 GHz for external fields below 5 kOe. For the band-stop filters, we observed power attenuation up to ∼100 dB/cm, and an insertion loss on the order of ∼2-3 dB, for both Permalloy and Fe-based structures. We also explore the use of thin films of hexagonal ferrites, antiferromagnets, and liquid crystals, and show that useful devices can be constructed with films less than one 1 μm in thickness.  相似文献   

16.
A series of Si1?xGex (x = 1, 0.848, 0.591, 0.382, 0.209, 0.064, 0) thin films prepared by ion beam sputtering were implanted with Fe ions to different doses using the metal vapor vacuum arc technique. X-ray absorption fine structure (XAFS) was used to characterize the local microstructure around the Fe atoms in Fe-doped Si1?xGex samples. Structural analysis showed that for annealed samples of Ge-rich thin films (including pure Ge) implanted with low doses of Fe ions, almost all the Fe ions substituted at Ge sites. However, an anti-ferromagnetic Fe6Ge5 impurity phase existed in the annealed samples implanted with high doses of Fe. It was also found that the solubility of Fe ions was highest in pure Ge films and that with increasing Si concentration, the solubility decreased. Magnetic analysis showed that for the as-implanted and annealed samples of Ge-rich thin films implanted with Fe ions, room-temperature ferromagnetism was strongest in the pure Ge series of samples and that as the Ge concentration decreased, the ferromagnetism at room temperature weakened. In addition, annealing could increase the number of Fe ions at substitution sites, which resulted in the observed increase in the saturated magnetization after annealing. Experiment and theoretical analysis showed that the ferromagnetism of Fe-doped Ge-rich Si1?xGex thin films samples originated from the s, p–d exchange interactions between the Si1?xGex matrix and those Fe ions which substituted at Ge sites and that the ferromagnetism was mediated by carriers.  相似文献   

17.
S. Tari 《Applied Surface Science》2011,257(9):4306-4310
Fe/Ge multilayers were grown on single crystal Ge(0 0 1) substrates by molecular beam epitaxy. The structural, electronic and magnetic properties of Fe/Ge have been studied. The analysis shows that Fe grows in a layer-by-layer epitaxial growth mode on Ge(0 0 1) substrates at 150 °C and no intermixing has been observed. Growth of a crystalline Ge film at 150 °C on a single crystal Fe film has been observed. At this temperature Ge films grow by means of the island growth mode according to reflection of high energy electron diffraction patterns. Fe layers of 36 nm thickness, deposited at 150 °C on Ge(0 0 1) substrates, show two magnetization reversal values indicating the growth of Fe in two different crystal orientations. 36 nm thick Fe and Ge layers grown at 150 °C in Ge/Fe/Ge/Fe/Ge(0 0 1) sequence shows ferromagnetic behavior, however, the same structure grown at 200 °C shows paramagnetic behavior.  相似文献   

18.
The growth of Ge thin films on the surface of a textured predominantly (100)-oriented tungsten ribbon is studied by thermal desorption spectrometry at different substrate temperatures over a wide range of coverages. The mechanism of growth of the Ge films at T = 300 K is similar to a layer-by-layer mechanism. For T > 300 K, the films grow through the Stranski-Krastanov mechanism, according to which the completion of the monolayer coverage is followed by the formation of three-dimensional crystallites; as a result, the desorption kinetics changes. For small coverages (i.e., in the absence of lateral interactions), the activation energy of Ge desorption from W(100) is E = 4.9 ± 0.2 eV. In a monolayer, this activation energy decreases to E = 3.9 ± 0.2 eV due to the repulsive lateral interactions. The energy of pairwise lateral interactions is determined to be ω = 0.3 eV.  相似文献   

19.
万虹  戴道生  方瑞宜  刘尊孝  兰健 《物理学报》1989,38(10):1551-1558
本文通过对非晶态轻稀土Pr,Nd和过渡族金属Fe,Co,Ni薄膜合金的低温磁性研究,分别得到了(Pr,Nd)x-(Fe,Co,Ni)1-x合金中Pr,Nd和Fe,Co,Ni金属磁矩随成份x的变化,并且通过对磁矩的研究得到Pr离子的4f电子可能有退局域化的结论。 关键词:  相似文献   

20.
Ultrathin Fe films have been epitaxially grown at room temperature on standard single crystal Ge(0 0 1) substrates and virtual Ge/Si(0 0 1) substrates. Their magnetic and electronic properties have been investigated in situ by spin polarized inverse photoemission and magneto-optical Kerr effect. In both cases, the onset of ferromagnetism appears definitively at 3 ML, and the overall behavior is very similar in the case of standard and virtual substrates, so that the latter can be employed for growing high quality Fe/Ge/Si interfaces. All the films investigated display uniaxial anisotropy, which is explained in terms of the surface morphology induced by the preparation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号