首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of vortex generators on heat transfer and pressure drop of a novel heat exchanger are investigated using computational fluid dynamics (CFD) method. The Reynolds numbers based on fin collar outside diameter varied from 600 to 2600, the attack angle from 10° to 50°, and the aspect ratio from 1 to 4. The numerical results are also analyzed from the view point of field synergy principle, according to which the reduction of the intersection between velocity and temperature gradient is the basic mechanism for augmentation of heat transfer. The results indicate that the enhanced configurations produce the longitudinal vortices and accelerate the flow, which result in significant augmentations of heat transfer with modest pressure drop penalties. It was found that the delta-winglet vortex generator with an attack angle of 20°and an aspect ratio of 2 provides the best integrated performance over the range of Reynolds number computed. The Colburn j-factor of the optimal configuration is shown to increase by 35.1–45.2% with a corresponding increase of 19.3–34.5% in the friction factor.  相似文献   

2.
A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer character-istics in a circular tube with 45° V-baffles with isothermal wal . The computations are based on the finite volume method (FVM), and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 2000. To generate main longitudinal vortex flows through the tested section, V-baffles with an attack angle of 45° are mounted in tandem and in-line arrangement on the opposite positions of the circular tube. Effects of tube blockage ratio, flow direction on heat transfer and pressure drop in the tube are studied. It is apparent that a pair of longitudinal twisted vortices (P-vortex) created by a V-baffle can induce impingement on a wal of the inter-baffle cavity and lead a drastic increase in heat trans-fer rate at tube wall. In addition, the larger blockage ratio results in the higher Nusselt number and friction factor values. The computational results show that the optimum thermal enhancement factor is around 3.20 at baffle height of B=0.20 and B=0.25 times of the tube diameter for the V-upstream and V-downstream, respectively. ? 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.  相似文献   

3.
In this research, laminar flow and heat transfer of two-phase water/Ag nanofluid with 0–6% volume fraction of nanoparticles at Re = 150–700 in a curved geometry are simulated using finite volume method. Studied geometry is an elliptical curved minichannel with curvature angle of 180°. Forced and natural flow of two-phase nanofluid is simulated at Gr = 15000, 35000 and 75000. For estimation of nanofluid flow behavior, two-phase mixture method is used. The second-order discretization and SIMPLEC algorithm are used for solving governing equations. The results indicate that the increase of volume fraction of nanoparticles leads to the enhancement of the temperature of central line of flow. The increase of Grashof number(Gr ~75000) has a great effect on reduction of dimensionless temperature in central line of flow. Creation of thermal boundary layer at Re = 500 and after the angle of 30° becomes significant. In low Grashof numbers(Gr ~15000), due to the great effects of temperature gradients close to wall, these regions have significant entropy generation.  相似文献   

4.
In this article, the thermal–hydraulic efficacy of a boehmite nanofluid with various particle shapes is evaluated inside a microchannel heat sink. The study is done for particle shapes of platelet, cylinder, blade, brick, and oblate spheroid at Reynolds numbers (Re) of 300, 800, 1300, and 1800. The particle volume fraction is assumed invariant for all of the nanoparticle shapes. The heat transfer coefficient (h), flow irregularities, pressure loss, and pumping power heighten by the elevation of the Re for all of the nanoparticle shapes. Also, the nanofluid having the platelet-shaped nanoparticles leads to the greatest h, and the nanofluid having the oblate spheroid particles has the lowest h and smallest pressure loss. In contrast, the nanofluid having the platelet-shaped nanoparticles leads to the highest pressure loss. The mean temperature of the bottom surface, thermal resistance, and temperature distribution uniformity decrease by the rise in the Reynolds number for all of the particle shapes. Also, the best distribution of the temperature and the lowest thermal resistance are observed for the suspension containing the platelet particles. Thereby, the thermal resistance of the nanofluid with the platelet particles shows a 9.5% decrement compared to that with the oblate spheroid particles at Re = 300. For all the nanoparticle shapes, the figure of merit (FoM) uplifts by elevating the Re, while the nanofluids containing the brick- and oblate spheroid-shaped nanoparticles demonstrate the highest FoM values.  相似文献   

5.
In this work, the effect of baffles in a pipe on heat transfer enhancement was studied using computational fluid dynamics (CFD) in the presence of Al2O3 nanoparticles which are dispersed into water. Fluid flow through the horizontal tube with uniform heat flux was simulated numerically and three dimensional governing partial differential equations were solved. To find an accurate model for CFD simulations, the results obtained by the single phase were compared with those obtained by three different multiphase models including Eulerian, mixture and volume of fluid (VOF) at Reynolds numbers in range of 600 to 3000, and two different nanoparticle concentrations (1% and 1.6%). It was found that multiphase models could better predict the heat transfer in nanofluids. The effect of baffles on heat transfer of nanofluid flow was also investigated through a baffled geometry. The numerical results show that at Reynolds numbers in the range of 600 to 2100, the heat transfer of nanofluid flowing in the geometry without baffle is greater than that of water flowing through a tube with baffle, whereas the difference between these effects (nanofluid and baffle) decreases with increasing the Reynolds number. At higher Reynolds numbers (2100–3000) the baffle has a greater effect on heat transfer enhancement than the nanofluid.  相似文献   

6.
Heat transfer and flow field of water-Al2O3 nanofluid were simulated three-dimensionally in the shell-side of shell-and-tube heat exchanger with helical baffles. The effects of Reynolds number and volume fraction on heat transfer and pressure drop were evaluated. Increasing the volume fraction and Reynolds number intensified both heat transfer and pressure drop. Reduction of the Reynolds number increased the friction factor, but no considerable change was observed in the friction factor by increasing the volume fraction at constant Reynolds number. Heat transfer of the nanofluid revealed greater dependency on the volume fraction of particles at lower Reynolds numbers. Models of Nusselt number and friction factor were obtained in the heat exchanger in terms of Reynolds number and volume fraction using neural network. The neural network predicted the output variables with great accuracy.  相似文献   

7.
The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especially in the microchannel slits,flow pattern along the outlet arc and the pressure drop through the whole of microchannel plate were investigated at different power-law flow indexes.The results showed that the velocity profile in the microchannel slits for low flow index fluids was similar to the plug flow and had uniform pattern.Also the power-law fluids with lower flow indexes had lower stagnation zones near the outlet of the microchannel plate.The pressure drop through the microchannel plate showed huge differences between the fluids.The most interesting result was that the pressure drops for power-law fluids were very smaller than that of Newtonian fluids.In addition,the heat transfer of the fluids through the microchannel with different channel numbers in a wide range of Reynolds number was investigated.For power-law fluid with flow index (n =0.4),the Nusselt number increases continuously as the number of channels increases.The results highlight the potential use of using pseudoplastic fluids in the microheat exchangers which can lower the pressure drop and increase the heat transfer efflciency.  相似文献   

8.
This work presents experimental investigation on the effects of nanofluid inlet temperature (40–90°C), Reynolds number (12,000–30,000), particle concentration (0–1 vol.%), and air velocity (0.25–0.55?m/s) on thermal and flow characteristics of water-based alumina nanofluids in a flat vertical tube of a radiator. The specific heat capacity, viscosity, density, and thermal conductivity were measured experimentally. The heat transfer coefficient enhanced (up to 31%) with an increase in fluid inlet temperature, particle volume concentration, Reynolds number as well as air inlet velocity. The pressure drop increased with an increase in the particle volume concentration and Reynolds number, while it decreased slightly with an increase in the fluid inlet temperature. The friction factor and pumping power increased with particle concentration. The friction factor decreased, while the pumping power increased with sn increase in fluid flow rate.  相似文献   

9.
刘剀  陆海峰  郭晓镭  刘一  潘响明  龚欣 《化工学报》2015,66(5):1656-1666
研究粉煤密相气力输送系统高压、高浓度煤粉通过不同节流比(0.44、0.55、0.7)、收缩角(2.5°、5°、9°)、扩张角(2.5°、8°、13°)、喉段长度(23d、43d、80d)的文丘里管的流动特征和压差特性。结果表明,不同结构参数的文丘里管的量纲1化压力分布趋势一致,但程度不一。其中节流比影响最为显著,并最直接地影响煤粉流经文丘里管的压差。节流比越小,总压差越大,扩张段压差显著增大。其他结构参数在各自的结构序列下主要改变文丘里管内压力分布,而对总压差改变不大。2.5°收缩角的收缩段压差最大,高浓度体系下5°和9°收缩角的收缩段压差差别不大。80d喉段长度的喉段压差最大。8°扩张角的扩张段压差最小。引入固相动量通量,获得本系统内煤粉流经文丘里管的压降经验方程,大部分实验点的计算偏差在30%以内,方程计算效果较好。  相似文献   

10.
Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.  相似文献   

11.
Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.  相似文献   

12.
In this paper, three liquids flowing in five pipes with the same inner diameter of 14 mm were studied to determine the relationship between the surface wettability and flow properties in laminar flow(Re b 2000). This was motivated by oilfield observations of increased pressure drops in non-metallic pipes compared to those in metal pipes,which was contrary to expectations. A new expression for the frictional coefficient that considers the Reynolds number and contact angle θ in laminar flow for non-metallic pipes was proposed based on the experimental results of single-phase flow using dimension and regression analyses. The solutions of the anomalous phenomenon were proposed from the perspectives of the pipe diameter, contact-angle difference, and the compatibility between flexible composite pipe and JLHW105 oil according to the new formula. The surprising finding was that the surface wettability could control the frictional resistance by the critical contact angle(39.9°) obtained at the same Reynolds number. If 0° b θ≤ 39.9°, the frictional coefficient increased as the contact angle increased. In contrast, if 39.9° b θ b 180°,the frictional coefficient decreased with increasing contact angle. The influences of the pipe diameter and contactangle difference on the pressure drop difference of JLHW105 oil showed an inversely proportional relation. A series of materials and liquids were tested. The selection of pipe material for transporting a given fluid can be based on the contact angle, surface tension, and critical limit of the contact angle obtained. The research results are expected to provide some guidelines for the selection of the appropriate pipe material for a given set of fluids.  相似文献   

13.
陈然  唐晟 《化工进展》2020,39(z2):19-25
随着电子器件功率的不断增加,其热流密度也相应提高。良好的热管理是保证电子器件安全平稳运行的重要条件。基于Hosseinpour与Sharma等的研究结果,本文设计了一种金字塔形扰动结构的双层微通道热沉,提高了微通道热沉换热能力。选取去离子水作为换热介质,通过数值模拟的方法建立并分析了基于金字塔形扰动结构的双层梯形微通道热沉模型,得出优化结构尺寸。研究表明,当微通道热沉流体雷诺数在468附近、扰动结构间距在300μm附近、扰动结构底高比在0.6附近时,该微通道热沉具有相比其他工况较优的换热性能;在Re=800的相同条件下,本文与Sharma等的研究结果相比,微通道热沉总热阻降低了26%;与普通双层梯形微通道热沉相比,具有金字塔型扰动结构的双层梯形微通道热沉的强化传热系数PEC为1.28。  相似文献   

14.
李艺凡  王志鹏 《化工进展》2022,41(6):2893-2901
设计了一种周期性扰流微结构,由布置在微通道侧壁的凹穴和微通道中心的针肋组成。研究了该热沉内流动和传热特性,分析了扰流结构几何参数对热沉不可逆损失和散热效率的影响,利用热阻和强化传热因子评价综合性能。研究表明,等腰梯形凹穴的底边相对长度(RL)对热沉性能具有显著影响。雷诺数(Re)较大时,减小RL能够明显减小凹穴内部的旋涡,从而减小流动摩擦损失,降低通道压降和流动不可逆性。同时,减小RL有利于增强流体对凹穴收缩段的冲刷,减小凹穴内的层流滞止区,将凹穴处的热量及时带走,从而提高热沉的散热效率。与传统光滑微通道(SM)相比,周期性扰流结构能够显著减小热沉的总熵产和热阻,增大强化传热因子,提高热沉的综合性能。综合考虑传热和流动阻力,较低泵功条件下,RL=0.3的热沉综合性能最优;较高泵功条件下,RL=0的热沉综合性能最佳。周期性扰流结构能够提高微冷却系统的效率和经济性,在微型器件冷却领域具有广阔的应用前景。  相似文献   

15.
陆威  苗冉  吴志根  吴长春  谢伟 《化工学报》2022,73(7):2924-2932
针对非牛顿流体在波节套管换热器管程的流动与换热进行了实验研究。重点研究了0.2%黄原胶溶液(XG)在不同波节套管换热器管程流动时的传热与阻力特性,并分析了强化传热机理。结果表明在相同工况下,随着管程黄原胶溶液Reynolds数ReXG的增大,套管换热器总传热系数k和管程进出口压降Δp逐渐增大;波高H和波距S影响黄原胶溶液在套管换热器管程的流动与换热。随波高H增大,黄原胶溶液受波节处的涡旋效应的影响更明显,流体层间剪切力变大导致黄原胶溶液黏度变小,湍流程度更大,管程传热性能提高,压降也增大,但综合传热性能不断优化;随波距S增大,单位长度波节数量减少,对黄原胶溶液扰动影响降低,湍流程度降低,管程传热系数先增大后减小,流动阻力不断降低,综合传热性能先提高后减弱。当H=3.5 mm、S=30 mm时管程波节管的综合换热因子ηtube达到最大,ηtube是相同条件下圆管的5.11~6.69倍。  相似文献   

16.
陆威  苗冉  吴志根  吴长春  谢伟 《化工学报》1951,73(7):2924-2932
针对非牛顿流体在波节套管换热器管程的流动与换热进行了实验研究。重点研究了0.2%黄原胶溶液(XG)在不同波节套管换热器管程流动时的传热与阻力特性,并分析了强化传热机理。结果表明在相同工况下,随着管程黄原胶溶液Reynolds数ReXG的增大,套管换热器总传热系数k和管程进出口压降Δp逐渐增大;波高H和波距S影响黄原胶溶液在套管换热器管程的流动与换热。随波高H增大,黄原胶溶液受波节处的涡旋效应的影响更明显,流体层间剪切力变大导致黄原胶溶液黏度变小,湍流程度更大,管程传热性能提高,压降也增大,但综合传热性能不断优化;随波距S增大,单位长度波节数量减少,对黄原胶溶液扰动影响降低,湍流程度降低,管程传热系数先增大后减小,流动阻力不断降低,综合传热性能先提高后减弱。当H=3.5 mm、S=30 mm时管程波节管的综合换热因子ηtube达到最大,ηtube是相同条件下圆管的5.11~6.69倍。  相似文献   

17.
在湍流状态Re=2640~17600下,采用恒热通量传热实验与数值模拟相结合的方法,系统研究Reynolds数Re和交错角对Ross LPD型静态混合器内湍流流动与传热性能影响,采用Nusselt数、Darcy摩擦系数、综合传热系数、速度场与温度梯度和压力梯度协同角等参数评价混合器内传热强化性能;基于CFD与LPT相耦合分析混合器内流体微元拉伸率。研究结果表明:SST k-ω模型预测Ross型静态混合器湍流阻力及传热结果与实验结果具有很好一致性;Ross混合器流场内形成与流场尺度较为接近的纵向涡,其涡心在圆形截面与半圆形截面中心间周期性迁移,横截面内湍流分散混合效率是Kenics的3.36~1.72倍;当Re>7040时,Ross LPD综合传热性能明显优于KSM;当叶片夹角为30°时,综合传热性能系数具有最大值;Ross LPD内插件具有高效低阻的技术优势和结构改进潜力。  相似文献   

18.
在湍流状态Re=2640~17600下,采用恒热通量传热实验与数值模拟相结合的方法,系统研究Reynolds数Re和交错角对Ross LPD型静态混合器内湍流流动与传热性能影响,采用Nusselt数、Darcy摩擦系数、综合传热系数、速度场与温度梯度和压力梯度协同角等参数评价混合器内传热强化性能;基于CFD与LPT相耦合分析混合器内流体微元拉伸率。研究结果表明:SST k-ω模型预测Ross型静态混合器湍流阻力及传热结果与实验结果具有很好一致性;Ross混合器流场内形成与流场尺度较为接近的纵向涡,其涡心在圆形截面与半圆形截面中心间周期性迁移,横截面内湍流分散混合效率是Kenics的3.36~1.72倍;当Re>7040时,Ross LPD综合传热性能明显优于KSM;当叶片夹角为30°时,综合传热性能系数具有最大值;Ross LPD内插件具有高效低阻的技术优势和结构改进潜力。  相似文献   

19.
In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.  相似文献   

20.
The heat transfer enhancement(HTE) in tubular heat exchangers fitted with vortex-generator(VG) inserts is experimentally investigated. The studied four parameters and ranges are: winglets-pitch ratio(1.33, 2.67, and 4),winglets-length ratio(0.33, 0.67, and 1), winglets-width ratio(0.2, 0.4, and 0.6), and Reynolds number(5200to 12200). The testing fluids are the water and Cu–water nanofluid at the volumetric fraction of 0.2%. The results obtained on HTE, pressure drop, and performance evaluation criterion(PEC) are compared with those for water in a smooth tube. It is found that the VG inserts with lower winglets-pitch ratio and higher winglets-length/width ratios present higher values of HTE and pressure drop. Over the range studied, the maximum PEC of 1.83 is detected with the Cu–water nanofluid inside the tube equipped with a VG insert at the winglets-width ratio of0.6 for the maximum Reynolds number, when the heat transfer rate and pressure drop are 1.24 times and 2.03 times of those in the smooth tube. Generalized regression equations of the Nusselt number, friction factor, and PEC are presented for the tubular heat exchangers with the VG inserts for both water and Cu–water nanofluid.It is concluded that the main advantage of the VG inserts is their simple fabrication and considerable performance, particularly at higher Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号