首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AFKBP65 (65-kDa FK506-binding protein) is an endoplasmic reticulum (ER)-localized peptidyl-prolyl cis-trans isomerase predicted to play a role in the folding and trafficking of secretory proteins. In previous studies, we have shown that FKBP65 is developmentally regulated and associates with the extracellular matrix protein, tropoelastin, during its maturation and transport through the ER. In this study, we show that FKBP65 is expressed in the lung with the same developmental pattern as tropoelastin and other matrix proteins. To test the hypothesis that FKBP65 is upregulated at times when extracellular matrix proteins are being actively synthesized and assembled, adult mice were treated with bleomycin to cause reinitiation of matrix protein production during the ensuing development of pulmonary fibrosis. After bleomycin instillation, FKBP65 expression was reactivated in the lung with a pattern similar to that observed for tropoelastin and type I collagen. Using human lung fibroblast cultures, we showed that FKBP65 does not undergo the unfolded protein response, a response associated with an upregulation of resident ER proteins that occurs after increased ER stress. When fibroblasts were treated with transforming growth factor (TGF)-beta1, which is upregulated during the development of pulmonary fibrosis and known to induce matrix production, FKBP65 expression and synthesis was also increased. Similar to type I collagen and tropoelastin, this response was completely inhibited in a dose-dependent manner by GGTI-298, a geranylgeranyl transferase I inhibitor. Treatment of fibroblasts with an inhibitor of ribonucleic acid (RNA) polymerase II after TGF-beta1 treatment showed that the effect of TGF-beta1 was not because of increased stabilization of the FKBP65 messenger RNA. In summary, we have shown that FKBP65 is highly expressed in lung development, downregulated in the adult, and can be reactivated in a coordinated manner with extracellular matrix proteins after lung injury. The expression pattern of FKBP65, which is atypical for general ER foldases, suggests that FKBP65 has a distinct set of developmentally regulated protein ligands. The response to injury, which may be in part a direct response to TGF-beta1, assures the presence of FKBP65 in the ER of cells actively producing components of the extracellular matrix.  相似文献   

2.
We have investigated the synthesis, accumulation, and secretion of laminin, an extracellular matrix glycoprotein, during differentiation of the C2 mouse skeletal muscle cell line in culture. Myoblasts actively synthesized laminin, as measured by incorporation of [35S]methionine and by a dot-immunobinding assay. In myoblast cultures laminin accumulated in an intracellular compartment and could be extracted with a physiological salt solution containing the detergent Triton X-100. After the culture medium was replaced to promote differentiation of myoblasts to myotubes, laminin synthesis was increased, and laminin began to accumulate in the medium in soluble form. During differentiation, laminin also accumulated in an insoluble cell-associated fraction that required guanidinium chloride for extraction. Indirect immunofluorescence and immunobinding assays showed that myotubes but not myoblasts contained laminin on their external surface. The time course of increase in surface laminin paralleled that of the accumulation of insoluble laminin. These results suggest that the insoluble fraction represents laminin bound to the extracellular matrix at the cell surface. Our experiments demonstrate, contrary to previous observations, that myotube cultures synthesize and accumulate laminin, and further, that the differentiation of proliferating myoblasts to multinucleated myotubes is accompanied by increased laminin synthesis, by secretion of laminin into the medium, and by the deposition of laminin into an extracellular matrix on the myotube surface.  相似文献   

3.
Cumulus oophorus, an investing structure unique to oocytes of higher mammals, is induced to synthesize an extensive extracellular matrix by ovulatory stimulus, leading to the characteristic preovulatory expansion of the cumulus-oocyte complex. The extracellular matrix consists of cumulus cell-secreted hyaluronan, proteoglycans and proteins, as well as extrafollicularly originated SHAPs (serum-derived hyaluronan-associated proteins) that are bound covalently to hyaluronan. The secretion and assembly of matrix molecules by cumulus cells are temporally regulated by factors derived from both mural granulosa cells and oocyte, which synchronize the deposition of the cumulus oophorus matrix with other intrafollicular ovulatory events. The cumulus oophorus matrix is essential for ovulation and subsequent fertilization. Recently, taking advantage of animal models with defined genetic modifications, it has become possible to investigate in vivo the structure of the cumulus oophorus matrix, the regulatory mechanism for matrix deposition and its biological functions. This review focuses on the recent findings on the construction of the cumulus oophorus matrix and the regulation.  相似文献   

4.
5.
Maquart FX  Bellon G  Pasco S  Monboisse JC 《Biochimie》2005,87(3-4):353-360
The term "matrikines" was coined for designating peptides liberated by partial proteolysis of extracellular matrix macromolecules, which are able to regulate cell activities. Among these peptides, some of them may modulate proliferation, migration, protease production, or apoptosis. In this review, we summarize the activity of matrikines derived from elastin and interstitial or basement membrane collagens on the regulation of matrix metalloproteinases expression and/or activation, and on the plasminogen/plasmin system. Due to their activity, matrikines may play a significant role in physiological or pathological processes such as wound healing or tumor invasion.  相似文献   

6.
7.
Expression of procollagens (Col1a1/2, Col3a1, Col4a1/2, Col5a1/2) and fibronectin 1 (Fn1) in the mouse fetal placental tissue was examined during the second half of pregnancy. Ribonuclease protection assays (RPAs) revealed that levels of these mRNAs noticeably increased between Days 10 and 14 of pregnancy, and they remained at relatively constant levels thereafter. In situ hyridization showed that Col1a1 and Col4a1 mainly localized in the labyrinth, whereas Fn1 was expressed mainly in the spongiotrophoblast. Since members of the transforming growth factor-beta (TGFB) superfamily are involved in the regulation of extracellular matrix (ECM) expression in various tissues, mRNA levels of TGFB family members and their binding proteins were also examined by RPAs. Transforming growth factor-beta1-3 (Tgfb1-3), activin subunits (Inhba, Inhbb), follistatin (Fst), and follistatin-like 3 (Fstl3) were expressed in the placenta, whereas significant expression of myostatin (Mstn) was not detected. Although the expression patterns of Tgfb1-3 and Inhba in the placenta suggest possible involvement of TGFBs and activin A in the regulation of placental ECM expression, neither TGFBs nor activin A affected ECM mRNA levels in vitro. On the other hand, hypoxia significantly decreased Col1a1/2 and Col4a1/2 mRNAs in cultured placental cells, and a high-glucose condition significantly increased Col1a1 and Col3a1 mRNAs. Fn1 expression was increased under the high-glucose condition, although hypoxia also increased Fn1 expression to a lesser degree. These data suggest that an increase in oxygen tension and nutrient supply during placentation rather than TGFB family members may be responsible for the increase in the placental ECM mRNA expression.  相似文献   

8.
A binding assay was developed for measuring the affinity of FKBP12 ligands. A biotinylation signal sequence was fused to the 5' end of the human FKBP12 gene, and the fusion protein was expressed in Escherichia coli with biotin ligase. The fusion protein was immobilized in avidin-coated multiwell plates, and varying concentrations of test ligands were allowed to compete with [3H]FK506 for FKBP12 sites on the plate. The assay provided Kd values for FK520, 32-hydroxyethyl indolyl FK520, and 18-ene, 20-oxa FK520 that are in agreement with previously reported values. The assay provides a convenient and rapid method for the assessment of FKBP12 binding by small molecules.  相似文献   

9.
Assembly of extracellular matrix.   总被引:17,自引:0,他引:17  
A great challenge in understanding how different extracellular matrices assemble is to sort through the vast number of possible interactions between and among matrix molecules. The most profound insights are likely to come from patients with defined defects of matrix molecules and the use of transgenic mice or other experimental technologies that mimic the complexity of the human system.  相似文献   

10.
Tissue inhibitors of metalloproteinases (TIMPs), which inhibit matrix metalloproteinases (MMPs) as well as the closely related, a disintegrin and metalloproteinases (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs), were traditionally thought to control extracellular matrix (ECM) proteolysis through direct inhibition of MMP-dependent ECM proteolysis. This classical role for TIMPs suggests that increased TIMP levels results in ECM accumulation (or fibrosis), whereas loss of TIMPs leads to enhanced matrix proteolysis. Mice lacking TIMP family members have provided support for such a role; however, studies with these TIMP deficient mice have also demonstrated that loss of TIMPs can often be associated with an accumulation of ECM. Collectively, these studies suggest that the divergent roles of TIMPs in matrix accumulation and proteolysis, which together can be referred to as ECM turnover, are dependent on the TIMP, specific tissue, and local tissue environment (i.e. health vs. injury/disease). Ultimately, these combined factors dictate the specific metalloproteinases being regulated by a given TIMP, and it is likely the diversity of metalloproteinases and their physiological substrates that determines whether TIMPs inhibit matrix proteolysis or accumulation. In this review, we discuss the evidence for the dichotomous roles of TIMPs in ECM turnover highlighting some of the common findings between different TIMP family members. Importantly, while we now have a better understanding of the role of TIMPs in regulating ECM turnover, much remains to be determined. Data on the specific metalloproteinases inhibited by different TIMPs in vivo remains limited and must be the focus of future studies.  相似文献   

11.
Vitamin D metabolites appear to regulate chondrocytes and osteoblasts via a combination of genomic and nongenomic mechanisms. Specificity of the nongenomic response to either 1,25-(OH)2D3 or 24, 25-(OH)2D3 may be conferred by the chemical composition of the target membrane and its fluid mosaic structure, by the presence of specific membrane receptors, or by the interaction with classic Vitamin D receptors. Nongenomic effects have been shown to include changes in membrane fluidity, fatty acid acylation and reacylation, arachidonic acid metabolism and prostaglandin production, calcium ion flux, and protein kinaase C activity. Chondrocytes metabolize 25-(OH)D3 to 1,25-(OH)2D3 and 24,25-(OH)2D3; production of these metabolites is regulated by both growth factors and hormones and is dependent on the state of cell maturation. 1,25-(OH)2D3 and 24,25-(OH)2D3 may interact directly with extracellular matix vesicles to regulate their function in the matrix, including protease activity, resulting in matrix modefication and calcification. Isolated matrix vesicles, produced by growth zone chondrocytes, can activate latent transforming growth factor-β when incubated with exogenous 1,25-(OH)2D3. These observations suggest that nongenomic regulation of martix vesicle structure and function may be a mechanism by which mesenchymal cells, like osteoblasts and chndrocytes, may modulate events in the extracellular matrix at sites distant from the cell surace.  相似文献   

12.
13.
14.
15.
In addition to the major structural molecules, which are constitutively present in extracellular matrices, several proteins appear in the extracellular matrix only at specific stages in development or in association with specific pathological conditions. These proteins include thrombospondin-1 and -2, tenascin C, osteopontin, members of the cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed family, and secreted protein acidic and rich in cysteine (osteonectin). These proteins play important roles in regulating cell fate during development and in the pathogenesis of several diseases in adult animals. We will review the interactions of T cells with this class of molecules and their resulting effects on T cell behavior. Receptors and signal transduction pathways that mediate the actions of matricellular proteins on T cells are beginning to be defined. Transgenic mice are providing new insights into the functions of these proteins in vivo and are yielding insights into the significance of their reported dysregulation in several human diseases.  相似文献   

16.
Pathogenic mechanisms invoved in glomerulopathies were investigated on the passive form of accelerate model of nephrotoxic nephritis and puromycin aminonucleoside nephrosis. The aim of the present study was to examine the interaction of some cytokines produced by mononuclear leukocytes and mesangial cells in a regulation of synthesis and degradation of the extracellular matrix components and adhesion molecules expression. In acute stage of nephrotoxic nephritis and puromycin aminonucleoside nephrosis the mononuclear leukocyte infiltration into glomeruli was noted. Mononuclear leukocytes produce cytokines that control mesangial cells proliferation and extracellular matrix accumulation. In summary the current study showed a key role of mononuclear leukocytes in inflammation and extracellular matrix turnover. The absence of mononuclear leukocytes or their abundance induce the disturbance of extracellular matrix synthesis and progression factors in glomerulosclerosis.  相似文献   

17.
Carcinogenesis - the process of cancer formation - is commonly discussed in terms of genetic alterations that lead to deregulation of cell growth. Recently, there has been a resurgence of interest in epigenetic factors and, in particular, the role of the stromal microenvironment and angiogenesis in tumor formation. In this article, cancer is presented as a disease of the developmental processes that govern how cells organize into tissues and tissues into organs. This histogenetic perspective raises the possibility that epithelial-mesenchymal interactions and the extracellular matrix (basement membrane) that is deposited through these interactions may actively contribute to the carcinogenic process. Experimental work is reviewed that confirms that extracellular matrix plays a key role in normal histodifferentiation during both epitheliogenesis and angiogenesis, and that epigenetic deregulation of cell-matrix interactions may actively promote tumor initiation and progression. The contributions of integrins, cytoskeleton, tensegrity and local variations in extracellular matrix mechanics to these processes are discussed, as are the implications of this work for future studies on cancer formation.  相似文献   

18.
In the late stages of the tissue repair process, as well as during normal tissue turnover, tissue homeostasis may rely mostly on autocrine mechanisms. Accordingly, we have cultured normal human fibroblasts on plastic surfaces and within three-dimensional collagen gels in order to study, in this environment, the action of autologous medium conditioned by the same cells. We have observed that inside collagen gels the autologous medium strongly restrains cell proliferation, due to fibroblast-secreted growth factors, whose inhibitory effect can be annulled by suramin. Furthermore, concerning extracellular matrix formation, conditioned medium has no effect on novel collagen synthesis, while it up-regulates collagenase MMP-1 only in cultures on plastic. On the other hand, it strongly inhibits the secretion of the collagenase inhibitor TIMP-1, irrespective of the substratum. This effect is completely blocked by SB 203580, an inhibitor of the p38 MAP kinase. The above suggest the presence of an autoregulatory mechanism involved in tissue homeostasis.  相似文献   

19.
An extracellular matrix microarray for probing cellular differentiation   总被引:2,自引:0,他引:2  
We present an extracellular matrix (ECM) microarray platform for the culture of patterned cells atop combinatorial matrix mixtures. This platform enables the study of differentiation in response to a multitude of microenvironments in parallel. The fabrication process required only access to a standard robotic DNA spotter, off-the-shelf materials and 1,000 times less protein than conventional means of investigating cell-ECM interactions. To demonstrate its utility, we applied this platform to study the effects of 32 different combinations of five extracellular matrix molecules (collagen I, collagen III, collagen IV, laminin and fibronectin) on cellular differentiation in two contexts: maintenance of primary rat hepatocyte phenotype indicated by intracellular albumin staining and differentiation of mouse embryonic stem (ES) cells toward an early hepatic fate, indicated by expression of a beta-galactosidase reporter fused to the fetal liver-specific gene, Ankrd17 (also known as gtar). Using this technique, we identified combinations of ECM that synergistically impacted both hepatocyte function and ES cell differentiation. This versatile technique can be easily adapted to other applications, as it is amenable to studying almost any insoluble microenvironmental cue in a combinatorial fashion and is compatible with several cell types.  相似文献   

20.
 We have investigated the expression patterns of extracellular matrix components in intramuscular connective tissue during the development of bovine semitendinosus muscle by means of indirect immunofluorescence techniques. Types I, III, V, and VI collagen and fibronectin were located in the endomysium and the perimysium. Type IV collagen, laminin, and heparan sulfate proteoglycans (PGs) were exclusively located in the endomysium, and dermatan sulfate PGs existed only in the perimysium. The localization of these components in the intramuscular connective tissue of semitendinosus muscle remained unchanged throughout prenatal and postnatal growth of cattle, suggesting that they are essential for forming and maintaining structures of the endomysium and perimysium in bovine semitendinosus muscle. On the other hand, decorin was undetectable in the endomysium of neonates, although other matrix components were already expressed. It was expressed slightly in the endomysium of 2-month-old calves, and clearly detectable in the endomysium of cattle more than 6 months old. Chondroitin sulfate PGs were barely detectable in the perimysium of fetuses and neonatal calves, and progressively appeared during postnatal development of the muscle. It seems likely that these PGs are closely related to the postnatal development of the endomysium and perimysium. Accepted: 30 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号