首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
    
This article focuses on the design of model predictive control (MPC) systems for nonlinear processes that utilize an ensemble of recurrent neural network (RNN) models to predict nonlinear dynamics. Specifically, RNN models are initially developed based on a data set generated from extensive open-loop simulations within a desired process operation region to capture process dynamics with a sufficiently small modeling error between the RNN model and the actual nonlinear process model. Subsequently, Lyapunov-based MPC (LMPC) that utilizes RNN models as the prediction model is developed to achieve closed-loop state boundedness and convergence to the origin. Additionally, machine learning ensemble regression modeling tools are employed in the formulation of LMPC to improve prediction accuracy of RNN models and overall closed-loop performance while parallel computing is utilized to reduce computation time. Computational implementation of the method and application to a chemical reactor example is discussed in the second article of this series.  相似文献   

2.
    
This work presents a detector-integrated two-tier control architecture capable of identifying the presence of various types of cyber-attacks, and ensuring closed-loop system stability upon detection of the cyber-attacks. Working with a general class of nonlinear systems, an upper-tier Lyapunov-based Model Predictive Controller (LMPC), using networked sensor measurements to improve closed-loop performance, is coupled with lower-tier cyber-secure explicit feedback controllers to drive a nonlinear multivariable process to its steady state. Although the networked sensor measurements may be vulnerable to cyber-attacks, the two-tier control architecture ensures that the process will stay immune to destabilizing malicious cyber-attacks. Data-based attack detectors are developed using sensor measurements via machine-learning methods, namely artificial neural networks (ANN), under nominal and noisy operating conditions, and applied online to a simulated reactor-reactor-separator process. Simulation results demonstrate the effectiveness of these detection algorithms in detecting and distinguishing between multiple classes of intelligent cyber-attacks. Upon successful detection of cyber-attacks, the two-tier control architecture allows convenient reconfiguration of the control system to stabilize the process to its operating steady state.  相似文献   

3.
    
This work explores the design of distributed model predictive control (DMPC) systems for nonlinear processes using machine learning models to predict nonlinear dynamic behavior. Specifically, sequential and iterative DMPC systems are designed and analyzed with respect to closed-loop stability and performance properties. Extensive open-loop data within a desired operating region are used to develop long short-term memory (LSTM) recurrent neural network models with a sufficiently small modeling error from the actual nonlinear process model. Subsequently, these LSTM models are utilized in Lyapunov-based DMPC to achieve efficient real-time computation time while ensuring closed-loop state boundedness and convergence to the origin. Using a nonlinear chemical process network example, the simulation results demonstrate the improved computational efficiency when the process is operated under sequential and iterative DMPCs while the closed-loop performance is very close to the one of a centralized MPC system.  相似文献   

4.
    
This work develops a transfer learning (TL) framework for modeling and predictive control of nonlinear systems using recurrent neural networks (RNNs) with the knowledge obtained in modeling one process transferred to another. Specifically, transfer learning uses a pretrained model developed based on a source domain as the starting point, and adapts the model to a target process with similar configurations. The generalization error for TL-based RNN (TL-RNN) is first derived to demonstrate the generalization capability on the target process. The theoretical error bound that depends on model capacity and the discrepancy between source and target domains is then utilized to guide the development of pretrained models for improved model transferability. Subsequently, the TL-RNN model is utilized as the prediction model in model predictive controller (MPC) for the target process. Finally, the simulation study of chemical reactors via Aspen Plus Dynamics is used to demonstrate the benefits of transfer learning.  相似文献   

5.
In the area of nonlinear predictive control, several control schemes using artificial neural networks have been proposed. In this work, the issues relating to the information contents of the data used to train the neural network components of these nonlinear predictive control schemes are considered. This raises questions about the design of experiments. A class of feedback-feedforward nonlinear controller based on the model predictive structure (also known as Internal Model Control, IMC, structure) is investigated. The implementation and performance of these neural network based controllers, together with comparisons to other nonlinear and linear controllers, are illustrated on two nonlinear continuous-stirred-tank-reactor simulations.  相似文献   

6.
    
Hydraulic fracturing has gained increasing attention as it allows the constrained natural gas and crude oil to flow out of low-permeability shale formations and significantly increase production. Perilous operating states of extremely high pressure also raise some safety concerns, requiring us to formulate an appropriate dynamic model, and provide a careful engineering control to ensure safe operating conditions. Moreover, uncertainties due to spatially varying rock properties increase the difficulties in control of the fracturing process. In this work, we formulate a first-principles model by considering the fracture evolution, mass transport of substances in the slurry, changing fluid properties, and the monitored operating pressure on the ground level. Next, we implement nonlinear model predictive control (NMPC) to control the process under a set of final requirements and process constraints. Our results show that the performance of standard NMPC degrades when the rock uncertainty causes the parameter mismatch between the process and the predictive model in the controller. With standard NMPC, designed with a nominal model, the process fails to meet the terminal requirements of fracture geometry, and pressure is violated in one of the parameter mismatch cases. Therefore, we resort to multistage NMPC, which considers uncertainty evolution in a scenario tree with separate control sequences to address constraint violations. We demonstrate that multistage NMPC presents good performance by showing constraint satisfaction whether the uncertain rock parameter realization is time-invariant or time-variant. We also simulate the process with multistage NMPC including different numbers of scenarios and compare their control performance. Our investigation demonstrates that multistage NMPC effectively manages parametric uncertainties attributed to non-homogeneous rock formation, and provides a promising control strategy for the hydraulic fracturing process.  相似文献   

7.
Maintaining safe operation of chemical processes and meeting environmental constraints are issues of paramount importance in the area of process systems and control engineering, and are ideally achieved while maximizing economic profit. It has long been argued that process safety is fundamentally a process control problem, yet few research efforts have been directed toward integrating the rather disparate domains of process safety and process control. Economic model predictive control (EMPC) has attracted significant attention recently due to its ability to optimize process operation accounting directly for process economics considerations. However, there is very limited work on the problem of integrating safety considerations in EMPC to ensure simultaneous safe operation and maximization of process profit. Motivated by the above considerations, this work develops three EMPC schemes that adjust in real‐time the size of the safety sets in which the process state should reside to ensure safe process operation and feedback control of the process state while optimizing economics via time‐varying process operation. Recursive feasibility and closed‐loop stability are established for a sufficiently small EMPC sampling period. The proposed schemes, which effectively integrate feedback control, process economics, and safety considerations, are demonstrated with a chemical process example. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2391–2409, 2016  相似文献   

8.
    
A hybrid model integrates a first-principles model with a data-driven model which predicts certain unknown dynamics of the process, resulting in higher accuracy than first-principles model. Additionally, a hybrid model has better extrapolation capabilities compared with a data-based model, which is useful for process control and optimization purposes. Nonetheless, the domain of applicability (DA) of a hybrid model is finite and should be taken into account when developing a hybrid model-based predictive controller in order to maximize its performance. To this end, a Control Lyapunov–Barrier Function-based model predictive controller (CLBF-based MPC) is developed which utilizes a deep hybrid model (DHM), that is, a deep neural network (DNN) combined with a first-principles model. Additionally, theoretical guarantees are provided on stability as well as on system states to stay within the DA of the DHM. The efficacy of the proposed control framework is demonstrated on a continuous stirred tank reactor.  相似文献   

9.
In this study, we present machine-learning–based predictive control schemes for nonlinear processes subject to disturbances, and establish closed-loop system stability properties using statistical machine learning theory. Specifically, we derive a generalization error bound via Rademacher complexity method for the recurrent neural networks (RNN) that are developed to capture the dynamics of the nominal system. Then, the RNN models are incorporated in Lyapunov-based model predictive controllers, under which we study closed-loop stability properties for the nonlinear systems subject to two types of disturbances: bounded disturbances and stochastic disturbances with unbounded variation. A chemical reactor example is used to demonstrate the implementation and evaluate the performance of the proposed approach.  相似文献   

10.
    
Polymerization process can be classified as a nonlinear type process since it exhibits a dynamic behaviour throughout the process. Therefore, it is highly complicated to obtain an accurate mechanistic model from the nonlinear process. This predicament always been a “wall” to researchers to be able to devise an optimal process model and control scheme for such a system. Neural networks have succeeded the other modelling and control methods especially in coping with nonlinear process due to their very conciliate characteristics. These characteristics are further explained in this work. The predicament that is encountered by researchers nowadays is lack of data which consequently lead to an imprecise mechanistic model that scarcely conforms to the desired process. The implementations of the neural network model not only restrict to polymerization reactor but to other difficult‐to‐measure parameters such as polymer quality, polymer melts index and mixture of initiators. This work is aimed to manifest ascendancy of neural networks in modelling and control of polymerization process.  相似文献   

11.
变增益的非线性预测控制算法   总被引:2,自引:0,他引:2  
采用变增益策略,用输入与稳态输出的映射表示系统的静态非线性,用一个增益为1的ARX模型表示系统的动态模型,代替多数文献中常用的分段线性多模型方法进行非线性系统的预测控制.文中通过对连续搅拌釜反应器(CSTR)的仿真,验证了本算法的有效性.  相似文献   

12.
    
This work develops a model predictive control (MPC) scheme using online learning of recurrent neural network (RNN) models for nonlinear systems switched between multiple operating regions following a prescribed switching schedule. Specifically, an RNN model is initially developed offline to model process dynamics using the historical operational data collected in a small region around a certain steady-state. After the system is switched to another operating region under a Lyapunov-based MPC with suitable constraints to ensure satisfaction of the prescribed switching schedule policy, RNN models are updated using real-time process data to improve closed-loop performance. A generalization error bound is derived for the updated RNN models using the notion of regret, and closed-loop stability results are established for the switched nonlinear system under RNN-based MPC. Finally, a chemical process example with the operation schedule that requires switching between two steady-states is used to demonstrate the effectiveness of the proposed RNN-MPC scheme.  相似文献   

13.
ABSTRACT

Rotary dryers are widely used for the continuous drying of minerals and chemicals on a large scale. Hot gases are passed parallel to the flowing solid to achieve the desired product moisture content. Because these dryers are energy intensive, it is mandatory to operate them as efficiently as possible to respond to economic pressures. Using a dynamic rotary dryer simulator for mineral concentrate, five control strategies are evaluated and compared. Two control strategies are based on PI controllers and the others use neural network models. Results clearly show that a feedforward action, in conjunction with a PI controller or incorporated within the structure of a neural network model, led to the best performances provided an accurate measurement of the feed moisture content is available.  相似文献   

14.
Rotary dryers are widely used for the continuous drying of minerals and chemicals on a large scale. Hot gases are passed parallel to the flowing solid to achieve the desired product moisture content. Because these dryers are energy intensive, it is mandatory to operate them as efficiently as possible to respond to economic pressures. Using a dynamic rotary dryer simulator for mineral concentrate, five control strategies are evaluated and compared. Two control strategies are based on PI controllers and the others use neural network models. Results clearly show that a feedforward action, in conjunction with a PI controller or incorporated within the structure of a neural network model, led to the best performances provided an accurate measurement of the feed moisture content is available.  相似文献   

15.
    
Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control (CMPC) strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The controllers connected with two kinds of communication networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reasonable CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.  相似文献   

16.
所有实际工业过程都包含一定程度的非线性,如pH中和过程由于其本身的强非线性是工业过程控制中具有挑战性的难题,但至今为止仍缺乏有效的非线性控制方法。将基于差分方程模型的模型预测控制策略(model predictive control,MPC)推广到包含一个静态非线性多项式函数和一个线性差分方程动态环节的非线性Hammerstein系统,详细描述了基于静态非线性多项式函数的最优控制作用求解方法,提出了一套新的非线性Hammerstein MPC 控制策略(nonlinear Hammerstein predictive control,NLHPC)。pH中和过程控制仿真和控制实验表明,NLHPC的控制结果好于工业上常用的非线性 PID(nonlinear PID,NL-PID)控制器。  相似文献   

17.
基于神经网络的pH中和过程非线性预测控制   总被引:1,自引:0,他引:1  
王志甄  邹志云 《化工学报》2019,70(2):678-686
针对pH中和过程这一化工过程系统中的典型非线性对象特点,应用神经网络建模思想和模型预测控制方法,并结合Hammerstein模型特点,研究pH中和过程非线性系统的两种新型模型预测控制手段,分别建立基于神经网络的非线性预测控制系统整体求解策略和基于Hammerstein模型的两步法预测控制策略,并用MATLAB对其进行仿真。控制仿真结果表明,建立的神经网络预测控制策略和非线性Hammerstein模型预测控制均优于传统PID控制方法,具有良好的设定值跟踪效果和抗干扰控制响应,说明这两种控制策略是非线性过程的有效控制方法。  相似文献   

18.
Achieving operational safety of chemical processes while operating them in an economically‐optimal manner is a matter of great importance. Our recent work integrated process safety with process control by incorporating safety‐based constraints within model predictive control (MPC) design; however, the safety‐based MPC was developed with a centralized architecture, with the result that computation time limitations within a sampling period may reduce the effectiveness of such a controller design for promoting process safety. To address this potential practical limitation of the safety‐based control design, in this work, we propose the integration of a distributed model predictive control architecture with Lyapunov‐based economic model predictive control (LEMPC) formulated with safety‐based constraints. We consider both iterative and sequential distributed control architectures, and the partitioning of inputs between the various optimization problems in the distributed structure based on their impact on process operational safety. Moreover, sufficient conditions that ensure feasibility and closed‐loop stability of the iterative and sequential safety distributed LEMPC designs are given. A comparison between the proposed safety distributed EMPC controllers and the safety centralized EMPC is demonstrated via a chemical process example. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3404–3418, 2017  相似文献   

19.
    
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.  相似文献   

20.
Closed‐loop stability of nonlinear systems under real‐time Lyapunov‐based economic model predictive control (LEMPC) with potentially unknown and time‐varying computational delay is considered. To address guaranteed closed‐loop stability (in the sense of boundedness of the closed‐loop state in a compact state‐space set), an implementation strategy is proposed which features a triggered evaluation of the LEMPC optimization problem to compute an input trajectory over a finite‐time prediction horizon in advance. At each sampling period, stability conditions must be satisfied for the precomputed LEMPC control action to be applied to the closed‐loop system. If the stability conditions are not satisfied, a backup explicit stabilizing controller is applied over the sampling period. Closed‐loop stability under the real‐time LEMPC strategy is analyzed and specific stability conditions are derived. The real‐time LEMPC scheme is applied to a chemical process network example to demonstrate closed‐loop stability and closed‐loop economic performance improvement over that achieved for operation at the economically optimal steady state. © 2014 American Institute of Chemical Engineers AIChE J, 61: 555–571, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号