首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is emerging as a promising therapeutic target for multiple myeloma (MM). In the present study, we performed a virtual screen against 800,000 of small molecule compounds by targeting PI3Kγ. C96, one of such compounds, inhibited PI3K activated by insulin-like growth factor-1 (IGF-1), but did not suppress IGF-1R activation. The cell-free assay revealed that C96 preferred to inhibit PI3Kα and δ, but was not active against AKT1, 2, 3 or mTOR. C96 inhibited PI3K activation in a time- and concentration-dependent manner. Consistent with its inhibition on PI3K/AKT, C96 downregulated the activation of mTOR, p70S6K, 4E-BP1, but did not suppress other kinases such as ERK and c-Src. Inhibition of the PI3K/AKT signaling pathway by C96 led to MM cell apoptosis which was demonstrated by Annexin V staining and activation of the pro-apoptotic signals. Furthermore, C96 displayed potent anti-myeloma activity in a MM xenograft model in nude mice. Oral administration of 100 mg/kg bodyweight almost fully suppressed tumor growth within 16 days, but without gross toxicity. Importantly, AKT activation was suppressed in tumor tissues from C96-treated mice, which was consistent with delayed tumor growth. Thus, we identified a novel PI3K inhibitor with a great potential for MM therapy.  相似文献   

2.
p38γ MAPK, one of the four members of p38 mitogen-activated protein kinases (MAPKs), has previously been shown to harbor oncogenic functions. However, the biologic function of p38γ MAPK in breast cancer has not been well defined. In this study, we have shown that p38γ MAPK is overexpressed in highly metastatic human and mouse breast cancer cell lines and p38γ MAPK expression is preferentially associated with basal-like and metastatic phenotypes of breast tumor samples. Ectopic expression of p38γ MAPK did not lead to an increase in oncogenic properties in vitro in most tested mammary epithelial cells. However, knockdown of p38γ MAPK expression resulted in a dramatic decrease in cell proliferation, colony formation, cell migration, invasion in vitro and significant retardation of tumorigenesis, and long-distance metastasis to the lungs in vivo. Moreover, knockdown of p38γ MAPK triggered the activation of AKT signaling. Inhibition of this feedback loop with various PI3K/AKT signaling inhibitors facilitated the effect of targeting p38γ MAPK. We further found that overexpression of p38γ MAPK did not promote cell resistance to chemotherapeutic agents doxorubicin and paclitaxel but significantly increased cell resistance to PJ-34, a DNA damage agent poly (ADP-ribose)-polymerase-1 (PARP) inhibitor in vitro and in vivo. Finally, we identified that p38γ MAPK overexpression led to marked cell cycle arrest in G2/M phase. Our study for the first time clearly demonstrates that p38γ MAPK is a promising target for the design of targeted therapies for basal-like breast cancer with metastatic characteristics and for overcoming potential resistance against the PARP inhibitor.  相似文献   

3.
The mammalian target of rapamycin (mTOR) and phosphoinositide-3-kinase (PI3K) pathways are often aberrantly activated in acute myeloid leukemia (AML) and play critical roles in proliferation and survival of leukemia cells. We provide evidence that simultaneous targeting of mTOR complexes with the catalytic mTOR inhibitor OSI-027 and of the p110α subunit of PI3K with the specific inhibitor BYL-719 results in efficient suppression of effector pathways and enhanced induction of apoptosis of leukemia cells. Importantly, such a combined targeting approach results in enhanced suppression of primitive leukemic progenitors from patients with AML. Taken together, these findings raise the possibility of combination treatments of mTOR and p110α inhibitors as a unique approach to enhance responses in refractory AML.  相似文献   

4.
Multi-drug resistance remains a critical issue in cancer treatment that hinders the effective use of chemotherapeutic drugs. The active components of traditional Chinese medicine have been applied as adjuvants to accentuate the anticancer properties of conventional drugs such as cisplatin. However, their application requires further validation and optimization. This study explored the anticancer activity of β-elemene, a natural component of traditional Chinese medical formulations. The effect of β-elemene on the anticancer properties of cisplatin was evaluated in A549 and NCI-H1650 lung cancer cells. Cell apoptosis, stem-like properties, glucose metabolism, multi-drug resistance, and PI3K/AKT/mTOR activation were assessed via flow cytometry, tumorsphere formation, and western blotting. The target genes of β-elemene were predicted using bioinformatics tools and validated in both cell lines. A xenograft model of lung cancer was established in nude mice to evaluate the combined effects of β-elemene and cisplatin in vivo. We found that β-elemene acted synergistically with cisplatin against non-small cell lung cancer cells by promoting apoptosis and impairing glucose metabolism, multi-drug resistance, and stemness maintenance. These effects were mediated by the inhibition of PI3K/AKT/mTOR activation. Bioinformatics analysis revealed that RB1 and TP53 are common target genes associated with lung cancer and β-elemene. The anti-tumorigenic properties of β-elemene were confirmed in vivo, wherein β-elemene, along with cisplatin, significantly suppressed tumor growth in a mouse xenograft model of non-small cell lung cancer. As such, β-elemene acted as an inhibitor of PI3K/AKT/mTOR signaling and enhanced the anticancer effect of cisplatin by targeting tumor metabolism, chemoresistance, and stem-like behavior. Thus, β-elemene is an effective anticancer adjuvant agent with potential clinical applications.  相似文献   

5.

Background

Most targeted anticancer therapies, as well as cytotoxic and radiation therapies, are encumbered by the development of secondary resistance by cancer cells. Resistance is a complex phenomenon involving multiple mechanisms, including activation of signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR). Novel strategies to overcome resistance by targeting these signaling pathways are being evaluated.

Methods

PubMed and key cancer congress abstracts were searched until July 2012 for preclinical and clinical data relating to the PI3K/AKT/mTOR pathway and anticancer treatment resistance, and use of PI3K/AKT/mTOR inhibitors in resistant cancer cell lines and patient populations.

Results

Activation of the PI3K/AKT/mTOR pathway is frequently implicated in resistance to anticancer therapies, including biologics, tyrosine kinase inhibitors, radiation, and cytotoxics. As such, inhibitors of the PI3K/AKT/mTOR pathway are being rapidly evaluated in preclinical models and in clinical studies to determine whether they can restore therapeutic sensitivity when given in combination. In breast cancer, non-small-cell lung cancer, and glioblastoma, we find compelling preclinical evidence to show that inhibitors of PI3K or mTOR can restore sensitivity in resistant cells. Although clinical evidence is less mature, a recent Phase III study with the mTORC1 inhibitor everolimus in patients with advanced breast cancer resistant to aromatase inhibition and several Phase I/II studies with PI3K inhibitors demonstrate proof-of-concept, warranting future clinical evaluation.

Conclusion

Current preclinical and clinical evidence suggest that inhibitors of the PI3K/AKT/mTOR pathway could have utility in combination with other anticancer therapies to circumvent resistance by cancer cells. Multiple clinical studies are ongoing.  相似文献   

6.
Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR. In this study, we found that glucose consumption and lactate production were increased and mitochondrial mass was decreased in Twist-overexpressing MCF10A mammary epithelial cells compared with vector-expressing MCF10A cells. Moreover, these Twist-induced phenotypic changes were augmented by hypoxia. The expression of some glucose metabolism-related genes such as PKM2, LDHA, and G6PD was also found to be upregulated. Mechanistically, activated β1-integrin/FAK/PI3K/AKT/mTOR and suppressed P53 signaling were responsible for the observed EMR. Knockdown of Twist reversed the effects of Twist on EMR in Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Furthermore, blockage of the β1-integrin/FAK/PI3K/AKT/mTOR pathway by siRNA or specific chemical inhibitors, or rescue of p53 activation can partially reverse the switch of glucose metabolism and inhibit the migration of Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Thus, our data suggest that Twist promotes reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells via activation of the β1-integrin/FAK/PI3K/AKT/mTOR pathway and inhibition of the p53 pathway. Our study provides new insight into EMR.  相似文献   

7.
8.
The Cdc2-like kinases (CLKs) regulate RNA splicing and have been shown to suppress cell growth. Knockdown of CLK2 was found to block glioma stem-like cell (GSC) growth in vivo through the AKT/FOXO3a/p27 pathway without activating mTOR and MAPK signaling, suggesting that these pathways mediate resistance to CLK2 inhibition. We identified CLK2 binding partners using immunoprecipitation assays and confirmed their interactions in vitro in GSCs. We then tested the cellular viability of several signaling inhibitors in parental and CLK2 knockdown GSCs. Our results demonstrate that CLK2 binds to 14-3-3τ isoform and prevents its ubiquitination in GSCs. Stable CLK2 knockdown increased PP2A activity and activated PI3K signaling. Treatment with a PI3K/mTOR inhibitor in CLK2 knockdown cells led to a modest reduction in cell viability compared to drug treatment alone at a lower dose. However, FGFR inhibitor in CLK2 knockdown cells led to a decrease in cell viability and increased apoptosis. Reduced expression of CLK2 in glioblastoma, in combination with FGFR inhibitors, led to synergistic apoptosis induction and cell cycle arrest compared to blockade or either kinase alone.  相似文献   

9.
The RAS/RAF/MEK/MAPK and the PTEN/PI3K/AKT/mTOR pathways are key regulators of proliferation and survival in human cancer cells. Selective inhibitors of different transducer molecules in these pathways have been developed as molecular targeted anti‐cancer therapies. The in vitro and in vivo anti‐tumor activity of pimasertib, a selective MEK 1/2 inhibitor, alone or in combination with a PI3K inhibitor (PI3Ki), a mTOR inhibitor (everolimus), or with multi‐targeted kinase inhibitors (sorafenib and regorafenib), that block also BRAF and CRAF, were tested in a panel of eight human lung and colon cancer cell lines. Following pimasertib treatment, cancer cell lines were classified as pimasertib‐sensitive (IC50 for cell growth inhibition of 0.001 µM) or pimasertib‐resistant. Evaluation of basal gene expression profiles by microarrays identified several genes that were up‐regulated in pimasertib‐resistant cancer cells and that were involved in both RAS/RAF/MEK/MAPK and PTEN/PI3K/AKT/mTOR pathways. Therefore, a series of combination experiments with pimasertib and either PI3Ki, everolimus, sorafenib or regorafenib were conducted, demonstrating a synergistic effect in cell growth inhibition and induction of apoptosis with sustained blockade in MAPK‐ and AKT‐dependent signaling pathways in pimasertib‐resistant human colon carcinoma (HCT15) and lung adenocarcinoma (H1975) cells. Finally, in nude mice bearing established HCT15 and H1975 subcutaneous tumor xenografts, the combined treatment with pimasertib and BEZ235 (a dual PI3K/mTOR inhibitor) or with sorafenib caused significant tumor growth delays and increase in mice survival as compared to single agent treatment. These results suggest that dual blockade of MAPK and PI3K pathways could overcome intrinsic resistance to MEK inhibition.  相似文献   

10.

Objective

To investigate the effects of CAL-101, particularly when combined with bortezomib (BTZ) on mantle cell lymphoma (MCL) cells, and to explore its relative mechanisms.

Methods

MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B (NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups.

Results

CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment.

Conclusion

Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ.KEYWORDS : CAL-101, bortezomib (BTZ), phosphatidylinositol-3-kinase (PI3K), mantle cell lymphoma (MCL)  相似文献   

11.
The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation, survival, and autophagy. The mTOR pathway is frequently activated in many human cancers, mainly resulting from alterations in the upstream regulators, such as phosphoinositide 3-kinase (PI3K)/AKT activation, PTEN loss or dysregulation of mTOR-negative regulators (e.g., TSC1/2), leading to uncontrolled proliferation. Thus, inhibiting the PI3K/AKT/mTOR pathways is widely considered as an effective approach for targeted cancer therapy. Recently, we and others found that DEPTOR, a naturally occurring inhibitor of both mTORC1 and mTORC2, was degraded by SCF (Skp1-Cullin-F box proteins) E3 ubiquitin ligase, the founding member of cullin-RING-ligases (CRLs), resulting in mTOR activation and cell proliferation. In addition to DEPTOR, previous studies have demonstrated that several other negative regulators of mTOR pathway are also substrates of CRL/SCF E3s. Thus, targeting CRL/SCF E3s is expected to cause the accumulation of these mTOR signal inhibitors to effectively block the mTOR pathway. In this review, we will discuss mTOR signaling pathway, how DEPTOR regulates mTOR/AKT axis, thus acting as a tumor suppressor or oncogene in some cases, how DEPTOR is ubiquitinated and degraded by SCFβ-TrCP E3, and how MLN4924, a small-molecule indirect inhibitor of CRL/SCF E3 ligases through blocking cullin neddylation, might be useful as a novel approach of mTOR pathway targeting for cancer therapy.  相似文献   

12.
Both the PI3K → Akt → mTOR and mitogen-activated protein kinase (MAPK) signaling pathways are often deregulated in prostate tumors with poor prognosis. Here we describe a new genetically engineered mouse model of prostate cancer in which PI3K-Akt-mTOR signaling is activated by inducible disruption of PTEN, and extracellular signal-regulated kinase 1/2 (ERK1/2) MAPK signaling is activated by inducible expression of a BRAF(V600E) oncogene. These tissue-specific compound mutant mice develop lethal prostate tumors that are inherently resistant to castration. These tumors bypass cellular senescence and disseminate to lymph nodes, bone marrow, and lungs where they form overt metastases in approximately 30% of the cases. Activation of PI3K → Akt → mTOR and MAPK signaling pathways in these prostate tumors cooperate to upregulate c-Myc. Accordingly, therapeutic treatments with rapamycin and PD0325901 to target these pathways, respectively, attenuate c-Myc levels and reduce tumor and metastatic burden. Together, our findings suggest a generalized therapeutic approach to target c-Myc activation in prostate cancer by combinatorial targeting of the PI3K → Akt → mTOR and ERK1/2 MAPK signaling pathways. Cancer Res; 72(18); 4765-76. ?2012 AACR.  相似文献   

13.
EGFR signaling promotes ovarian cancer tumorigenesis, and high EGFR expression correlates with poor prognosis. However, EGFR inhibitors alone have demonstrated limited clinical benefit for ovarian cancer patients, owing partly to tumor resistance and the lack of predictive biomarkers. Cotargeting EGFR and the PI3K pathway has been previously shown to yield synergistic antitumor effects in ovarian cancer. Therefore, we reasoned that PI3K may affect cellular response to EGFR inhibition. In this study, we revealed PI3K isoform-specific effects on the sensitivity of ovarian cancer cells to the EGFR inhibitor erlotinib. Gene silencing of PIK3CA (p110α) and PIK3CB (p110β) rendered cells more susceptible to erlotinib. In contrast, low expression of PIK3R2 (p85β) was associated with erlotinib resistance. Depletion of PIK3R2, but not PIK3CA or PIK3CB, led to increased DNA damage and reduced level of the nonhomologous end joining DNA repair protein BRD4. Intriguingly, these defects in DNA repair were reversed upon erlotinib treatment, which caused activation and nuclear import of p38 MAPK to promote DNA repair with increased protein levels of 53BP1 and BRD4 and foci formation of 53BP1. Remarkably, inhibition of p38 MAPK or BRD4 re-sensitized PIK3R2-depleted cells to erlotinib. Collectively, these data suggest that p38 MAPK activation and the subsequent DNA repair serve as a resistance mechanism to EGFR inhibitor. Combined inhibition of EGFR and p38 MAPK or DNA repair may maximize the therapeutic potential of EGFR inhibitor in ovarian cancer.  相似文献   

14.
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways are critical for normal human physiology, and any alteration in their regulation leads to several human cancers. These pathways are well interconnected and share a survival mechanism for escaping the depressant effect of antagonists. Therefore, novel small molecules capable of targeting both pathways with minimal or no toxicity are better alternatives to current drugs, which are disadvantaged by their accompanying resistance and toxicity. In this study, we demonstrate that the PI3K/AKT/mTOR/MEK is a crucial oncoimmune signature in multiple cancers. Moreover, we describe NSC777213, a novel isoflavone core and cobimetinib-inspired small molecule, which exhibit both antiproliferative activities against all panels of NCI60 human tumor cell lines (except COLO205 and HT29) and a selective cytotoxic preference for melanoma, non-small-cell lung cancer (NSCLC), brain, renal, and ovarian cancer cell lines. Notably, for NSC777213 treatment, chemoresistant ovarian cancer cell lines, including SK-OV-3, OVCAR-3, OVCAR-4, and NCI/ADR-RES, exhibited a higher antiproliferative sensitivity (total growth inhibition (TGI) = 7.62-31.50 µM) than did the parental cell lines OVCAR-8 and IGROV1 (TGI > 100 µM). NSC777213 had a mechanistic correlation with clinical inhibitors of PI3K/AKT/mTOR/MEK. NSC777213 demonstrates robust binding interactions and higher affinities for AKT and mTOR than did isoflavone, and also demonstrate a higher affinity for human MEK-1 kinase than some MEK inhibitors under clinical developments. In addition, treatment of U251 and U87MG cells with NSC777213 significantly downregulated the expression levels of the total and phosphorylated forms of PI3K/AKT/mTOR/MEK. Our study suggests that NSC777213 is a promising PI3K/AKT/mTOR/MEK inhibitor for further preclinical and clinical evaluation as a chemotherapeutic agent, particularly for the treatment of NSCLC, melanoma, and brain, renal, and ovarian cancers.  相似文献   

15.
Anti-cancer cancer-targeted therapies are designed to exploit a particular vulnerability in the tumor, which in most cases results from its dependence on an oncogene and/or loss of a tumor suppressor. Mutations in the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway are freqcuently found in breast cancers and associated with cellular transformation, tumorigenesis, cancer progression, and drug resistance. Several drugs targeting PI3K/ATK/mTOR are currently in clinical trials, mainly in combination with endocrine therapy and anti-HER2 therapy. These drugs are the focus of this review.  相似文献   

16.
BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy.  相似文献   

17.
Class I phosphatidylinositol 3-kinases (PI3Ks) are frequently activated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to the loss of PTEN function. Therefore, targeting PI3Ks is a promising innovative approach for T-ALL treatment, however at present no definitive evidence indicated which is the better therapeutic strategy between pan or selective isoform inhibition, as all the four catalytic subunits might participate in leukemogenesis. Here, we demonstrated that in both PTEN deleted and PTEN non deleted T-ALL cell lines, PI3K pan-inhibition exerted the highest cytotoxic effects when compared to both selective isoform inhibition or dual p110γ/δ inhibition. Intriguingly, the dual p110γ/δ inhibitor IPI-145 was effective in Loucy cells, which are representative of early T-precursor (ETP)-ALL, a T-ALL subtype associated with a poor outcome. PTEN gene deletion did not confer a peculiar reliance of T-ALL cells on PI3K activity for their proliferation/survival, as PTEN was inactivated in PTEN non deleted cells, due to posttranslational mechanisms. PI3K pan-inhibition suppressed Akt activation and induced caspase-independent apoptosis. We further demonstrated that in some T-ALL cell lines, autophagy could exert a protective role against PI3K inhibition. Our findings strongly support clinical application of class I PI3K pan-inhibitors in T-ALL treatment, with the possible exception of ETP-ALL cases.  相似文献   

18.
Park KR  Nam D  Yun HM  Lee SG  Jang HJ  Sethi G  Cho SK  Ahn KS 《Cancer letters》2011,312(2):178-188
Both PI3K/AKT/mTOR/S6K1 and mitogen activated protein kinase (MAPK) signaling cascades play an important role in cell proliferation, survival, angiogenesis, and metastasis of tumor cells. In the present report, we investigated the effects of β-caryophyllene oxide (CPO), a sesquiterpene isolated from essential oils of medicinal plants such as guava (Psidium guajava), oregano (Origanum vulgare L.), cinnamon (Cinnamomum spp.) clove (Eugenia caryophyllata), and black pepper (Piper nigrum L.) on the PI3K/AKT/mTOR/S6K1 and MAPK activation pathways in human prostate and breast cancer cells. We found that CPO not only inhibited the constitutive activation of PI3K/AKT/mTOR/S6K1 signaling cascade; but also caused the activation of ERK, JNK, and p38 MAPK in tumor cells. CPO induced increased reactive oxygen species (ROS) generation from mitochondria, which is associated with the induction of apoptosis as characterized by positive Annexin V binding and TUNEL staining, loss of mitochondrial membrane potential, release of cytochrome c, activation of caspase-3, and cleavage of PARP. Inhibition of ROS generation by N-acetylcysteine (NAC) significantly prevented CPO-induced apoptosis. Subsequently, CPO also down-regulated the expression of various downstream gene products that mediate cell proliferation (cyclin D1), survival (bcl-2, bcl-xL, survivin, IAP-1, and IAP-2), metastasis (COX-2), angiogenesis (VEGF), and increased the expression of p53 and p21. Interestingly, we also observed that CPO can significantly potentiate the apoptotic effects of various pharmacological PI3K/AKT inhibitors when employed in combination in tumor cells. Overall, these findings suggest that CPO can interfere with multiple signaling cascades involved in tumorigenesis and used as a potential therapeutic candidate for both the prevention and treatment of cancer.  相似文献   

19.
Acquired resistance to BRAF inhibitors often involves MAPK re‐activation, yet the MEK inhibitor trametinib showed minimal clinical activity in melanoma patients that had progressed on BRAF‐inhibitor therapy. Selective ERK inhibitors have been proposed as alternative salvage therapies. We show that ERK inhibition is more potent than MEK inhibition at suppressing MAPK activity and inhibiting the proliferation of multiple BRAF inhibitor resistant melanoma cell models. Nevertheless, melanoma cells often failed to undergo apoptosis in response to ERK inhibition, because the relief of ERK‐dependent negative feedback activated RAS and PI3K signalling. Consequently, the combination of ERK and PI3K/mTOR inhibition was effective at promoting cell death in all resistant melanoma cell models, and was substantially more potent than the MEK/PI3K/mTOR inhibitor combination. Our data indicate that a broader targeting strategy concurrently inhibiting ERK, rather than MEK, and PI3K/mTOR may circumvent BRAF inhibitor resistance, and should be considered during the clinical development of ERK inhibitors.  相似文献   

20.
Attempts to directly block the mutant neuroblastoma rat sarcoma oncogene (NRAS) protein, a driving mutation in many cancer types, have been unsuccessful. Current treatments focus on inhibition of different components of NRAS'' two main downstream cascades: PI3K/AKT/mTOR and MAPK. Here we test a novel dual therapy combination of metformin and trametinib on a panel of 16 NRAS mutant cell lines, including melanoma cells, melanoma cells with acquired trametinib resistance, lung cancer and neuroblastoma cells. We show that both of the main downstream cascades of NRAS can be blocked by this combination: metformin indirectly inhibits the PI3K/AKT/mTOR pathway and trametinib directly impedes the MAPK pathway. This dual therapy synergistically reduced cell viability in vitro and xenograft tumor growth in vivo. We conclude that metformin and trametinib combinations are effective in preclinical models and may be a possible option for treatment of NRAS mutant cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号