首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytogenetic approaches play an essential role as a quick evaluation of the first genetic effects after mutagenic treatment. Although labor-intensive and time-consuming, they are essential for the analyses of cytotoxic and genotoxic effects in mutagenesis and environmental monitoring. Over the years, conventional cytogenetic analyses were a part of routine laboratory testing in plant genotoxicity. Among the methods that are used to study genotoxicity in plants, the micronucleus test particularly represents a significant force. Currently, cytogenetic techniques go beyond the simple detection of chromosome aberrations. The intensive development of molecular biology and the significantly improved microscopic visualization and evaluation methods constituted significant support to traditional cytogenetics. Over the past years, distinct approaches have allowed an understanding the mechanisms of formation, structure, and genetic activity of the micronuclei. Although there are many studies on this topic in humans and animals, knowledge in plants is significantly limited. This article provides a comprehensive overview of the current knowledge on micronuclei characteristics in plants. We pay particular attention to how the recent contemporary achievements have influenced the understanding of micronuclei in plant cells. Together with the current progress, we present the latest applications of the micronucleus test in mutagenesis and assess the state of the environment.  相似文献   

2.
During the decommissioning of nuclear facilities, the tritiated materials must be removed. These operations generate tritiated steel and cement particles that could be accidentally inhaled by workers. Thus, the consequences of human exposure by inhalation to these particles in terms of radiotoxicology were investigated. Their cyto-genotoxicity was studied using two human lung models: the BEAS-2B cell line and the 3D MucilAirTM model. Exposures of the BEAS-2B cell line to particles (2 and 24 h) did not induce significant cytotoxicity. Nevertheless, DNA damage occurred upon exposure to tritiated and non-tritiated particles, as observed by alkaline comet assay. Tritiated particles only induced cytostasis; however, both induced a significant increase in centromere negative micronuclei. Particles were also assessed for their effects on epithelial integrity and metabolic activity using the MucilAirTM model in a 14-day kinetic mode. No effect was noted. Tritium transfer through the epithelium was observed without intracellular accumulation. Overall, tritiated and non-tritiated stainless steel and cement particles were associated with moderate toxicity. However, these particles induce DNA lesions and chromosome breakage to which tritium seems to contribute. These data should help in a better management of the risk related to the inhalation of these types of particles.  相似文献   

3.
Senescent cells are relatively stable, lacking proliferation capacity yet retaining metabolic activity. In contrast, cancer cells are rather invasive and devastating, with uncontrolled proliferative capacity and resistance to cell death signals. Although tumorigenesis and cellular senescence are seemingly opposite pathological events, they are actually driven by a unified mechanism: DNA damage. Integrity of the DNA damage response (DDR) network can impose a tumorigenesis barrier by navigating abnormal cells to cellular senescence. Compromise of DDR, possibly due to the inactivation of DDR components, may prevent cellular senescence but at the expense of tumor formation. Here we provide an overview of the fundamental role of DDR in tumorigenesis and cellular senescence, under the light of the Yin-Yang concept of Chinese philosophy. Emphasis is placed on discussing DDR outcome in the light of in vivo models. This information is critical as it can help make better decisions for clinical treatments of cancer patients.  相似文献   

4.
Hypertension causes many deaths worldwide and has shown an increasing trend as a severe non-communicable disease. Conventional antihypertensive drugs inevitably cause side effects, and great efforts have been made to exploit healthier and more-available substitutes. Microalgae have shown great potential in this regard and have been applied in the food and pharmaceutical industries. Some compounds in microalgae have been proven to have antihypertensive effects. Among these natural compounds, peptides from microalgae are promising angiotensin-converting enzyme (ACE) inhibitors because an increasing number of peptides show hypertensive effects and ACE inhibitory-like activity. In addition to acting as ACE inhibitors for the treatment of hypertension, these peptides have other probiotic properties, such as antioxidant and anti-inflammatory properties, that are important for the prevention and treatment of hypertension. Numerous studies have revealed the important bioactivities of ACE inhibitors and their mechanisms. This review discusses the antihypertensive effects, structure-activity relationships, molecular docking studies, interaction mechanisms, and other probiotic properties of microalgal ACE inhibitory peptides according to the current research related to microalgae as potential antihypertensive drugs. Possible research directions are proposed. This review contributes to a more comprehensive understanding of microalgal antihypertensive peptides.  相似文献   

5.
Worldwide, infertility affects between 10 and 15% of reproductive-aged couples. Female infertility represents an increasing health issue, principally in developing countries, as the current inclinations of delaying pregnancy beyond 35 years of age significantly decrease fertility rates. Female infertility, commonly imputable to ovulation disorders, can be influenced by several factors, including congenital malformations, hormonal dysfunction, and individual lifestyle choices, such as smoking cigarettes, stress, drug use and physical activity. Moreover, diet-related elements play an important role in the regulation of ovulation. Modern types of diet that encourage a high fat intake exert a particularly negative effect on ovulation, affecting the safety of gametes and the implantation of a healthy embryo. Identifying and understanding the cellular and molecular mechanisms responsible for diet-associated infertility might help clarify the confounding multifaceted elements of infertility and uncover novel, potentially curative treatments. In this view, this systematic revision of literature will summarize the current body of knowledge of the potential effect of high-fat diet (HFD) exposure on oocyte and follicular quality and consequent female reproductive function, with particular reference to molecular mechanisms and pathways. Inflammation, oxidative stress, gene expression and epigenetics represent the main mechanisms associated with mammal folliculogenesis and oogenesis.  相似文献   

6.
Radiotherapy has been used for more than a hundred years to cure or locally control tumors. Regression of tumors outside of the irradiated field was occasionally observed and is known as the abscopal effect. However, the occurrence of systemic anti-tumor effects was deemed too rare and unpredictable to be a therapeutic goal. Recent studies suggest that immunotherapy and radiation in combination may enhance the abscopal response. Increasing numbers of cases are being reported since the routine implementation of immune checkpoint inhibitors, showing that combined radiotherapy with immunotherapy has a synergistic effect on both local and distant (i.e., unirradiated) tumors. In this review, we summarize pre-clinical and clinical reports, with a specific focus on the mechanisms behind the immunostimulatory effects of radiation and how this is enhanced by immunotherapy.  相似文献   

7.
Recent years have seen a marked rise in implantation into the body of a great variety of devices: hip, knee, and shoulder replacements, pacemakers, meshes, glucose sensors, and many others. Cochlear and retinal implants are being developed to restore hearing and sight. After surgery to implant a device, adjacent cells interact with the implant and release molecular signals that result in attraction, infiltration of the tissue, and attachment to the implant of various cell types including monocytes, macrophages, and platelets. These cells release additional signaling molecules (chemokines and cytokines) that recruit tissue repair cells to the device site. Some implants fail and require additional revision surgery that is traumatic for the patient and expensive for the payer. This review examines the literature for evidence to support the possibility that fibronectins and BMPs could be coated on the implants as part of the manufacturing process so that the proteins could be released into the tissue surrounding the implant and improve the rate of successful implantation.  相似文献   

8.
Intestinal cell dysfunctions involved in obesity and associated diabetes could be correlated with impaired intestinal cell development. To date, the molecular mechanisms underlying these dysfunctions have been poorly investigated because of the lack of a good model for studying obesity. The main aim of this study was to investigate the effects of lipotoxicity on intestinal cell differentiation in small intestinal organoid platforms, which are used to analyze the regulation of cell differentiation. Mouse intestinal organoids were grown in the presence/absence of high palmitate concentrations (0.5 mM) for 48 h to simulate lipotoxicity. Palmitate treatment altered the expression of markers involved in the differentiation of enterocytes and goblet cells in the early (Hes1) and late (Muc2) phases of their development, respectively, and it modified enterocytes and goblet cell numbers. Furthermore, the expression of enteroendocrine cell progenitors (Ngn3) and I cells (CCK) markers was also impaired, as well as CCK-positive cell numbers and CCK secretion. Our data indicate, for the first time, that lipotoxicity simultaneously influences the differentiation of specific intestinal cell types in the gut: enterocytes, goblet cells and CCK cells. Through this study, we identified novel targets associated with molecular mechanisms affected by lipotoxicity that could be important for obesity and diabetes therapy.  相似文献   

9.
The current anti-cancer treatments are not enough to eradicate tumors, and therefore, new modalities and strategies are still needed. Most tumors generate an inflammatory tumor microenvironment (TME) and maintain the niche for their development. Because of the critical role of inflammation via high-mobility group box 1 (HMGB1)–receptor for advanced glycation end-products (RAGE) signaling pathway in the TME, a novel compound possessing both anti-cancer and anti-inflammatory activities by suppressing the HMGB1-RAGE axis provides an effective strategy for cancer treatment. A recent work of our group found that some anti-cancer 3-styrylchromones have weak anti-inflammatory activities via the suppression of this axis. In this direction, we searched such anti-cancer molecules possessing potent anti-inflammatory activities and discovered 7-methoxy-3-hydroxy-styrylchromone (C6) having dual suppressive activities. Mechanism-of-action studies revealed that C6 inhibited the increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) under the stimulation of HMGB1-RAGE signaling and thereby suppressed cytokine production in macrophage-like RAW264.7 cells. On the other hand, in colorectal cancer HCT116 cells, C6 inhibited the activation of ERK1/2, cyclin-dependent kinase 1, and AKT, down-regulated the protein level of XIAP, and up-regulated pro-apoptotic Bax and caspase-3/7 expression. These alterations are suggested to be involved in the C6-induced suppression of cell cycle/proliferation and initiation of apoptosis in the cancer cells. More importantly, in cancer cells, the treatment of C6 potentiates the anti-cancer effects of DNA-damaging agents. Thus, C6 may be a promising lead for the generation of a novel class of cancer therapeutics.  相似文献   

10.
Ovarian cancer is the most lethal gynecologic malignancy in the United States. Some patients affected by ovarian cancers often present genome instability with one or more of the defects in DNA repair pathways, particularly in homologous recombination (HR), which is strictly linked to mutations in breast cancer susceptibility gene 1 (BRCA 1) or breast cancer susceptibility gene 2 (BRCA 2). The treatment of ovarian cancer remains a challenge, and the majority of patients with advanced-stage ovarian cancers experience relapse and require additional treatment despite initial therapy, including optimal cytoreductive surgery (CRS) and platinum-based chemotherapy. Targeted therapy at DNA repair genes has become a unique strategy to combat homologous recombination-deficient (HRD) cancers in recent years. Poly (ADP-ribose) polymerase (PARP), a family of proteins, plays an important role in DNA damage repair, genome stability, and apoptosis of cancer cells, especially in HRD cancers. PARP inhibitors (PARPi) have been reported to be highly effective and low-toxicity drugs that will tremendously benefit patients with HRD (i.e., BRCA 1/2 mutated) epithelial ovarian cancer (EOC) by blocking the DNA repair pathways and inducing apoptosis of cancer cells. PARP inhibitors compete with NAD+ at the catalytic domain (CAT) of PARP to block PARP catalytic activity and the formation of PAR polymers. These effects compromise the cellular ability to overcome DNA SSB damage. The process of HR, an essential error-free pathway to repair DNA DSBs during cell replication, will be blocked in the condition of BRCA 1/2 mutations. The PARP-associated HR pathway can also be partially interrupted by using PARP inhibitors. Grossly, PARP inhibitors have demonstrated some therapeutic benefits in many randomized phase II and III trials when combined with the standard CRS for advanced EOCs. However, similar to other chemotherapy agents, PARP inhibitors have different clinical indications and toxicity profiles and also face drug resistance, which has become a major challenge. In high-grade epithelial ovarian cancers, the cancer cells under hypoxia- or drug-induced stress have the capacity to become polyploidy giant cancer cells (PGCCs), which can survive the attack of chemotherapeutic agents and start endoreplication. These stem-like, self-renewing PGCCs generate mutations to alter the expression/function of kinases, p53, and stem cell markers, and diploid daughter cells can exhibit drug resistance and facilitate tumor growth and metastasis. In this review, we discuss the underlying molecular mechanisms of PARP inhibitors and the results from the clinical studies that investigated the effects of the FDA-approved PARP inhibitors olaparib, rucaparib, and niraparib. We also review the current research progress on PARP inhibitors, their safety, and their combined usage with antiangiogenic agents. Nevertheless, many unknown aspects of PARP inhibitors, including detailed mechanisms of actions, along with the effectiveness and safety of the treatment of EOCs, warrant further investigation.  相似文献   

11.
Both the detrimental effect of prenatal exposure to di-(2-ethylhexyl)-phthalate (DEHP) and the beneficial effects of physical exercise on brain functions have been reported. The oxytocin pathway has been implicated in the onset of maternal behaviors. Epigenetic modification of the oxytocin receptor gene (OXTR) through DNA methylation has been associated with the pathogenesis of neuropsychiatric disorders. The purpose of this study was to investigate the effects of prenatal DEHP exposure on oxytocin-regulated maternal behaviors and to examine the protective effect of exercise. Pregnant rats (F0) were fed with vehicle or DEHP during gestation and the offspring females (F1) were assessed for their maternal behaviors by pup retrieval test at postpartum. The results showed that reduced pup retrieval activities without significant alteration of stress responses were observed in the prenatally DEHP-exposed females. Prenatal DEHP exposure decreased the expressions of oxytocin, Oxtr mRNA, and oxytocin receptor, and increased Oxtr methylation in the hypothalamus of postpartum female rats. There were no significant effects of exercise on behavioral, biochemical, and epigenetic measurements. These results suggest that prenatal DEHP exposure has a long-term adverse effect on maternal behaviors; Oxtr hyper-methylation may be a potential epigenetic mechanism for this alteration, which cannot be prevented by physical exercise during childhood.  相似文献   

12.
13.
The partitioning of the long‐lived α‐emitters and the high‐yield fission products from dissolved used nuclear fuel is a key component of processes envisioned for the safe recycling of used nuclear fuel and the disposition of high‐level waste. These future processes will likely be based on aqueous solvent‐extraction technologies for light‐water reactor fuel and consist of four main components for the sequential separation of uranium, fission products, group trivalent actinides, and lanthanides, and then trivalent actinides from lanthanides. Since the solvent systems will be in contact with highly radioactive solutions, they must be robust toward radiolytic degradation in an irradiated mixed organic/aqueous acidic environment, with the formation of only benign degradation products. Therefore, an understanding of their radiation chemistry is important to the design of a practical system. In the first paper in this series, we reviewed the radiation chemistry of irradiated aqueous nitric acid and the tributyl phosphate ligand for uranium extraction in the first step of these extractions. In the second, we reviewed the radiation chemistry of the ligands proposed for use in the extraction of cesium and strontium fission products. Here, we review the radiation chemistry of the ligands that might be used for the group extraction of the lanthanides and actinides. This includes traditional organophosphorus reagents such as CMPO and HDEHP, as well as novel reagents such as the amides and diamides currently being investigated.  相似文献   

14.
Chemo-radiotherapy, which combines chemotherapy with radiotherapy, has been clinically practiced since the 1970s, and various anticancer drugs have been shown to have a synergistic effect when used in combination with radiotherapy. In particular, cisplatin (CDDP), which is often the cornerstone of multi-drug combination cancer therapies, is highly versatile and frequently used in combination with radiotherapy for the treatment of many cancers. Therefore, the mechanisms underlying the synergistic effect of CDDP and radiotherapy have been widely investigated, although no definitive conclusions have been reached. We present a review of the combined use of CDDP and radiotherapy, including the latest findings, and propose a mechanism that could explain their synergistic effects. Our hypothesis involves the concepts of overlap and complementation. “Overlap” refers to the overlapping reactions of CDDP and radiation-induced excessive oxidative loading, which lead to accumulating damage to cell components, mostly within the cytoplasm. “Complementation” refers to the complementary functions of CDDP and radiation that lead to DNA damage, primarily in the nucleus. In fact, the two concepts are inseparable, but conceptualizing them separately will help us understand the mechanism underlying the synergism between radiation therapy and other anticancer drugs, and help us to design future radiosensitizers.  相似文献   

15.
Maintaining appropriate levels of physical exercise is an optimal way for keeping a good state of health. At the same time, optimal exercise performance necessitates an integrated organ system response. In this respect, physical exercise has numerous repercussions on metabolism and function of different organs and tissues by enhancing whole-body metabolic homeostasis in response to different exercise-related adaptations. Specifically, both prolonged and intensive physical exercise produce vast changes in multiple and different lipid-related metabolites. Lipidomic technologies allow these changes and adaptations to be clarified, by using a biological system approach they provide scientific understanding of the effect of physical exercise on lipid trajectories. Therefore, this systematic review aims to indicate and clarify the identifying biology of the individual response to different exercise workloads, as well as provide direction for future studies focused on the body’s metabolome exercise-related adaptations. It was performed using five databases (Medline (PubMed), Google Scholar, Embase, Web of Science, and Cochrane Library). Two author teams reviewed 105 abstracts for inclusion and at the end of the screening process 50 full texts were analyzed. Lastly, 14 research articles specifically focusing on metabolic responses to exercise in healthy subjects were included. The Oxford quality scoring system scale was used as a quality measure of the reviews. Information was extracted using the participants, intervention, comparison, outcomes (PICOS) format. Despite that fact that it is well-known that lipids are involved in different sport-related changes, it is unclear what types of lipids are involved. Therefore, we analyzed the characteristic lipid species in blood and skeletal muscle, as well as their alterations in response to chronic and acute exercise. Lipidomics analyses of the studies examined revealed medium- and long-chain fatty acids, fatty acid oxidation products, and phospholipids qualitative changes. The main cumulative evidence indicates that both chronic and acute bouts of exercise determine significant changes in lipidomic profiles, but they manifested in very different ways depending on the type of tissue examined. Therefore, this systematic review may offer the possibility to fully understand the individual lipidomics exercise-related response and could be especially important to improve athletic performance and human health.  相似文献   

16.
Mitochondria dysfunction is implicated in the pathogenesis of cardiovascular diseases (CVD). Exercise training is potentially an effective non-pharmacological strategy to restore mitochondrial health in CVD. However, how exercise modifies mitochondrial functionality is inconclusive. We conducted a systematic review using the PubMed; Scopus and Web of Science databases to investigate the effect of exercise training on mitochondrial function in CVD patients. Search terms included “mitochondria”, “exercise”, “aerobic capacity”, and “cardiovascular disease” in varied combination. The search yielded 821 records for abstract screening, of which 20 articles met the inclusion criteria. We summarized the effect of exercise training on mitochondrial morphology, biogenesis, dynamics, oxidative capacity, antioxidant capacity, and quality. Amongst these parameters, only oxidative capacity was suitable for a meta-analysis, which demonstrated a significant effect size of exercise in improving mitochondrial oxidative capacity in CVD patients (SMD = 4.78; CI = 2.99 to 6.57; p < 0.01), but with high heterogeneity among the studies (I2 = 75%, p = 0.003). Notably, aerobic exercise enhanced succinate-involved oxidative phosphorylation. The majority of the results suggested that exercise improves morphology and biogenesis, whereas findings on dynamic, antioxidant capacity, and quality, were inadequate or inconclusive. A further randomized controlled trial is clearly required to explain how exercise modifies the pathway of mitochondrial quantity and quality in CVD patients.  相似文献   

17.
Background: Autophagy is a highly conserved catabolic homeostatic process, crucial for cell survival. It has been shown that autophagy can modulate different cardiovascular pathologies, including vascular calcification (VCN). Objective: To assess how modulation of autophagy, either through induction or inhibition, affects vascular and valvular calcification and to determine the therapeutic applicability of inducing autophagy. Data sources: A systematic review of English language articles using MEDLINE/PubMed, Web of Science (WoS) and the Cochrane library. The search terms included autophagy, autolysosome, mitophagy, endoplasmic reticulum (ER)-phagy, lysosomal, calcification and calcinosis. Study characteristics: Thirty-seven articles were selected based on pre-defined eligibility criteria. Thirty-three studies (89%) studied vascular smooth muscle cell (VSMC) calcification of which 27 (82%) studies investigated autophagy and six (18%) studies lysosomal function in VCN. Four studies (11%) studied aortic valve calcification (AVCN). Thirty-four studies were published in the time period 2015–2020 (92%). Conclusion: There is compelling evidence that both autophagy and lysosomal function are critical regulators of VCN, which opens new perspectives for treatment strategies. However, there are still challenges to overcome, such as the development of more selective pharmacological agents and standardization of methods to measure autophagic flux.  相似文献   

18.
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.  相似文献   

19.
Most ovarian cancer cases are diagnosed at an advanced stage (III or IV), in which a primary debulking surgery combined with adjuvant systemic chemotherapy is the standard management. Since targeted therapy is less toxic to human cells than systemic chemotherapy, it has drawn much attention and become more popular. Angiogenesis is a critical process during the proliferation of ovarian cancer cells. Currently, many studies have put emphases on anti-angiogenetic medication, such as bevacizumab, the first and most investigated angiogenesis inhibitor that can exert anti-neoplastic effects. Bevacizumab is a recombinant humanized monoclonal antibody that has been approved for first-line maintenance treatment of advanced ovarian cancer. This review is a summary of current literature about the molecular mechanisms of actions, safety, and effects of bevacizumab for use in advanced epithelial ovarian cancer. Some common side effects of bevacizumab will be also discussed. As an inhibitor of angiogenesis, bevacizumab binds to circulating vascular endothelial growth factor (VEGF) and thereby inhibits the binding of VEGF to its receptors on the surface of endothelial cells. Neutralization of VEGF prevents neovascularization and leads to apoptosis of tumor endothelial cells and a decrease in interstitial fluid pressure within the tumors, which allows greater capacity for chemotherapeutic drugs to reach specific targeted sites. Grossly, bevacizumab has demonstrated some significant therapeutic benefits in many randomized trials in combination with the standard chemotherapy for advanced epithelial ovarian cancer. Based on the available evidence, a higher dosage and a longer duration of bevacizumab appear to achieve better therapeutic effects and progression-free survival. On the other hand, patients with more severe diseases or at a higher risk of progression seem to benefit more from bevacizumab use. However, many unknown aspects of bevacizumab, including detailed mechanisms of actions, effectiveness, and safety for the treatment of ovarian cancer, warrant further investigation.  相似文献   

20.
Fetal exposure in adverse environmental factors during intrauterine life can lead to various biological adjustments, affecting not only in utero development of the conceptus, but also its later metabolic and endocrine wellbeing. During human gestation, maternal bone turnover increases, as reflected by molecules involved in bone metabolism, such as vitamin D, osteocalcin, sclerostin, sRANKL, and osteoprotegerin; however, recent studies support their emerging role in endocrine functions and glucose homeostasis regulation. Herein, we sought to systematically review current knowledge on the effects of aforementioned maternal bone biomarkers during pregnancy on fetal intrauterine growth and metabolism, neonatal anthropometric measures at birth, as well as on future endocrine and metabolic wellbeing of the offspring. A growing body of literature converges on the view that maternal bone turnover is likely implicated in fetal growth, and at least to some extent, in neonatal and childhood body composition and metabolic wellbeing. Maternal sclerostin and sRANKL are positively linked with fetal abdominal circumference and subcutaneous fat deposition, contributing to greater birthweights. Vitamin D deficiency correlates with lower birthweights, while research is still needed on intrauterine fetal metabolism, as well as on vitamin D dosing supplementation during pregnancy, to diminish the risks of low birthweight or SGA neonates in high-risk populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号