首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When an SPME fiber is exposed for a short period of time to a flowing fluid sample, the amount of extracted analyte depends on its diffusion coefficient in the matrix medium, and it can be correlated to its concentration using a simple mathematical model. This work discusses the extension of this approach, already validated for gaseous samples and SPME fibers coated with strong adsorbent coatings, to the diffusion-based quantification of analytes present in aqueous samples. Dilute aqueous solutions of aromatic hydrocarbons were used as model samples and vials were modified to use conventional magnetic agitation with controlled tangential flow of the test solution around the fiber. It was demonstrated that, with proper selection of the stirring speed and sampling time, the same diffusion-based quantitative model used for gas samples could be employed. Under optimal conditions, the concentrations of the evaluated aromatic hydrocarbons were estimated with relative standard deviations between 0.8 and 3.6% and without deviation from the expected values within this precision range. Considering the extraction times involved, between 30 and 60 s, the approach here presented is the fastest possible technique for direct extraction of analytes from liquid samples.  相似文献   

2.
Solid-phase microextraction (SPME) fiber coatings based on conductive polypyrrole films were prepared for the electrochemical extraction and desorption of ionic analytes. Simple preparation of each of the PPY extraction coatings on a platinum wire was possible with a constant potential method, but more importantly, cycling of the film between oxidation and reduction potentials facilitated the extraction and desorption of ionic analytes. The analytes were desorbed into a sample aliquot of water and were determined by flow injection analysis using a mass spectrometer. The fiber coatings and the developed electrochemical SPME method were found to be stable and reproducible (RSD < 5%; N = 5) and could be extended to several cations and anions, confirming the versatility of the approach. Preconcentration of the analyte on the fiber was also possible by repeating the processes to increase the amount of analyte extracted.  相似文献   

3.
Various approaches to the analysis of polar compounds in different matrixes by solid-phase microextraction (SPME) were studied. The analysis of polar analytes in nonpolar matrixes was performed with custom-made SPME fibers coated with Nafion perfluorinated resin. The sensitivity of this fiber in this type of analysis was better by 1 order of magnitude on average as compared to those of any of the commercially available fibers. The fiber was the most sensitive for the most polar of the compounds studied, i.e., methanol. Determination of methanol, ethanol, and 2-propanol in unleaded gasoline was illustrated. Except for methanol, the fiber did not perform very well in the analysis of alcohols in water. The fiber was capable of extracting water from benzene. SPME analysis of polar compounds in water was studied using aqueous solutions of acetone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), 2-propanol, 2-methyl-2-propanol, and tetrahydrofuran. Fibers coated with poly(dimethylsiloxane)/divinylbenzene yielded the highest sensitivity in this type of analysis. Low- or sub-ppb detection limits were obtained for all the analytes with FID detection when the samples were saturated with NaCl. Since fibers of this type extract analytes by adsorption rather than absorption, nonlinear responses were observed when all the analytes were allowed to equilibrate because of the limited number of adsorption sites on the surface of the coating and displacement of compounds with low distribution ratios by compounds with high distribution ratios (mainly MIBK). Two approaches allowed a significant improvement in linearity: extraction of a vigorously stirred sample for a short time, or extraction under static conditions for a time much shorter than that required for equilibration of all the analytes. In both cases the amount of MIBK extracted was significantly reduced, while the remaining analytes were affected to a much lesser degree. The sensitivity of acetone determination was greatly improved by in-solution derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride and extraction of the oxime formed.  相似文献   

4.
Traditional static headspace and headspace solid-phase microextraction (SPME) techniques were compared for their effectiveness in the extraction of volatile flavor compounds from the headspace of various juice samples. Each method was used to evaluate the responses of certain analytes from real samples and calibration standards in order to provide sensitivity comparisons between the two techniques. Experimental results showed traditional static headspace lacked the sensitivity needed to evaluate certain flavor volatiles, such as α-terpinene and linalool, and that further concentration of the headspace was necessary. Dramatic improvements in the extraction abilities of the SPME fibers over the traditional static headspace method were noted. Different SPME fibers were investigated to determine the selectivities of the various fibers to the different flavor compounds present in the juice samples. Of the various fibers investigated, the PDMS/DVB fiber proved to be the most useful for these analyses. Aging studies of juice samples were also performed which verified that degradation could be observed and quantified.  相似文献   

5.
Molecularly imprinted polymeric fibers for solid-phase microextraction   总被引:2,自引:0,他引:2  
Solid-phase microextraction (SPME) is widely used in analytical laboratories for the analysis of organic compounds, thanks to its simplicity and versatility. However, the current commercially available fibers are based on nonselective sorbents, making difficult in some cases the final determination of target compounds by chromatographic techniques. Molecularly imprinted polymers (MIPs) are stable polymers with selective molecular recognition abilities, provided by the template used during their synthesis. In the present work, a simple polymerization strategy allowing the obtainment of molecularly imprinted polymeric fibers to be used in SPME is proposed. Such a strategy is based on the direct synthesis of molecularly imprinted polymeric fibers (monoliths) using silica capillaries as molds, with silica being etched away after polymerization. The system propazine:methacrylic acid was used as a model for the preparation of molecularly imprinted fibers, and its ability to selectively rebind triazines was evaluated. Variables affecting polymer morphology (i.e., polymerization time, fiber thickness) and binding-elution of target analytes (i.e., solvents, time, temperature) were studied in detail. The imprinted fiber showing the best performance in terms of selectivity and affinity for triazines was successfully applied to the extraction of target analytes from environmental and food samples.  相似文献   

6.
Solid-phase microextraction (SPME) coupled with ion mobility spectrometry (IMS) was used for the detection and quantitation of 4-hydroxybenzoate preservatives, methylparaben, ethylparaben, propylparaben, and butylparaben, in commercial pharmaceutical products. For the first time, SPME-IMS is described for the simultaneous detection, separation, and quantitation of multiple analytes in complex matrixes. The parabens are extracted from the samples using SPME, and the analytes on the fiber are heated by the IMS desorber unit and vaporized into the drift tube. The four preservatives differing only by a methyl group were separated in less than 18 ms. The analytical procedure was optimized for fiber coating selection, extraction time, sample pH, sample volume, ionic strength, and IMS conditions. Separation characteristics such as resolution, theoretical plates, and drift times of the parabens were also evaluated based on the direct interfacing of SPME to IMS. The conditions were tested using six over-the-counter topical products containing various combinations of preservatives. Analysis of the samples by SPME-IMS using benzyl paraben as an internal standard yields good comparison to an HPLC method, thereby reinforcing the applicability of this technique as a method for routine analysis. Limits of detection were 10 ng/mL for methylparaben and ethylparaben and 5 ng/mL for propylparaben and butylparaben. Good linearity range and reproducibility of less than 8% were obtained.  相似文献   

7.
The technique of automated in-tube solid-phase microextraction (SPME) coupled with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) was evaluated for the determination of beta-blockers in urine and serum samples. In-tube SPME is an extraction technique for organic compounds in aqueous samples, in which analytes are extracted from the sample directly into an open tubular capillary by repeated draw/eject cycles of sample solution. LC/MS analyses of beta-blockers were initially performed by liquid injection onto a LC column. Nine beta-blockers tested in this study gave very simple ESI mass spectra, and strong signals corresponding to [M + H]+ were observed for all beta-blockers. The beta-blockers were separated with a Hypersil BDS C18 column using acetonitrile/methanol/water/acetic acid (15:15:70:1) as a mobile phase. To optimize the extraction of beta-blockers, several in-tube SPME parameters were examined. The optimum extraction conditions were 15 draw/eject cycles of 30 microL of sample in 100 mM Tris-HCl (pH 8.5) at a flow rate of 100 microL/min using an Omegawax 250 capillary (Supelco, Bellefonte, PA). The beta-blockers extracted by the capillary were easily desorbed by mobile-phase flow, and carryover of beta-blockers was not observed. Using in-tube SPME/LC/ESI-MS with selected ion monitoring, the calibration curves of beta-blockers were linear in the range from 2 to 100 ng/mL with correlation coefficients above 0.9982 (n = 18) and detection limits (S/N = 3) of 0.1-1.2 ng/mL. This method was successfully applied to the analysis of biological samples without interference peaks. The recoveries of beta-blockers spiked into human urine and serum samples were above 84 and 71%, respectively. A serum sample from a patient administrated propranolol was analyzed using this method and both propranolol and its metabolites were detected.  相似文献   

8.
A novel sol-gel method is described for the preparation of solid-phase microextraction (SPME) fibers. The protective polyimide coating was removed from a 1-cm end segment of a 200 μm o.d. fused-silica fiber, and the exposed outer surface was coated with a bonded sol-gel layer of poly(dimethylsiloxane) (PDMS). The chemistry behind this coating technique is presented. Efficient SPME-GC analyses of polycyclic aromatic hydrocarbons, alkanes, aniline derivatives, alcohols, and phenolic compounds in dilute aqueous solutions were achieved using sol-gel-coated PDMS fibers. The extracted analytes were transferred to a GC injector using an in-house-designed SPME syringe that also allowed for easy change of SPME fibers. Electron microscopy experiments suggested a porous structure for the sol-gel coating with a thickness of ~10 μm. The coating porosity provided higher surface area and allowed for the use of thinner coatings (compared with 100-μm-thick coatings for conventional SPME fibers) to achieve acceptable stationary-phase loadings and sample capacities. Enhanced surface area of sol-gel coatings, in turn, provided efficient analyte extraction rates from solution. Experimental results on thermal stability of sol-gel PDMS fibers were compared with those for commercial 100-μm PDMS fibers. Our findings suggest that sol-gel PDMS fibers possess significantly higher thermal stability (>320 °C) than conventionally coated PDMS fibers that often start bleeding at 200 °C. This is due, in part, to the strong chemical bonding between the sol-gel-generated organic-inorganic composite coating and the silica surface. Enhanced thermal stability allowed the use of higher injection port temperatures for efficient desorption of less-volatile analytes and should translate into extended range of analytes that can be handled by SPME-GC techniques. Experimental evidence is provided that supports the operational advantages of sol-gel coatings in SPME-GC analysis.  相似文献   

9.
Wu HF  Yen JH  Chin CC 《Analytical chemistry》2006,78(5):1707-1712
A novel analytical technique termed drop-to-drop solvent microextraction (DDSME) was developed to determine three methoxyacetophenone isomers in one drop of water, which were then detected by gas chromatography/mass spectrometry using electronic ionization mass spectrometry for quantification analysis and self-ion/molecule reaction/tandem mass spectrometry for isomer differentiation. The best optimum parameters for the DDSME technique were as follows: extraction time, 5 min; using toluene as the extraction solvent; volume of extraction solvent, 0.5 microL and no salt addition. The advantages of this method are rapidity, convenience, ease of operation, simplicity of the device, and extremely little solvent and sample consumption. The limit of detection (LOD) for this technique was 1 ng/mL. The relative standard deviation was less than 2.6% (n = 5). The linear range of the calibration curve of DDSME is from 0.01 to 5 microg/mL with correlation coefficient (r2) of >0.954. In the comparison of the LOD of DDSME with other sample pretreatment methods including liquid/liquid extraction (LLE), single-drop microextraction (SDME), solid-phase microextraction (SPME), and liquid-phase microextraction (LPME) using a dual gauge microsyringe with hollow fiber methods, this method shows much better in sensitivity than the LLE (25 ng/mL) and it is compatible with SDME (0.5 ng/mL), SPME (0.5 ng/mL), and LPME using a dual gauge microsyringe with a hollow fiber (1 ng/mL). However, DDSME was more convenient than the LPME using a dual gauge microsyringe with a hollow fiber method and much lower cost than the SPME technique.  相似文献   

10.
Biocompatible C18-polyacrylonitrile (PAN) coating was used as the extraction phase for an automated 96-blade solid phase microextraction (SPME) system with thin-film geometry. Three different methods of coating preparation (dipping, brush painting, and spraying) were evaluated; the spraying method was optimum in terms of its stability and reusability. The high-throughput sample preparation was achieved by using a robotic autosampler that enabled simultaneous preparation of 96 samples in 96-well-plate format. The increased volume of the extraction phase of the C18-PAN thin film coating resulted in significant enhancement in the extraction recovery when compared with that of the C18-PAN rod fibers. Various factors, such as reusability, reproducibility, pH stability, and reliability of the coating were evaluated. The results showed that the C18-PAN 96-blade SPME coating presented good extraction recovery, long-term reusability, good reproducibility, and biocompatibility. The limits of detection and quantitation were in the ranges of 0.1-0.3 and 0.5-1 ng/mL for all four analytes.  相似文献   

11.
The use of SPME fibers coated with porous polymer solid phases for quantitative purposes is limited due to effects such as interanalyte displacement and competitive adsorption. For air analysis, these problems can be averted by employing short exposure times to air samples flowing around the fiber. In these conditions, a simple mathematical model allows quantification without the need of calibration curves. This work describes two portable dynamic air sampling (PDAS) devices designed for application of this approach to nonequilibrium SPME sampling and determination of airborne volatile organic compounds (VOCs). The use of a PDAS device resulted in greater adsorbed VOC mass compared to the conventional SPME extraction in static air for qualitative screening of live plant aromas and contaminants in indoor air. For all studied air samples, an increase in the number of detected compounds and sensitivity was also observed. Quantification of aromatic VOCs in indoor air was also carried out using this approach and the PDAS/SPME device. Measured VOC concentrations were in low parts-per-billion by volume range using only 30-s SPME fiber exposure and were comparable to those obtained with a standard NIOSH method 1501. The use of PDAS/SPME devices reduced the total air sampling and analysis time by several orders of magnitude compared to the NIOSH 1501 method.  相似文献   

12.
Previous aerosol studies utilizing solid-phase microextraction (SPME) predominantly focused on volatile and semivolatile compounds in the gaseous phase. Difficulties were associated with quantitative analysis of these compounds when they were associated with atmospheric particles. The present study combines SPME technology with that of carboxen packed needles (needle trap, NT) for analysis of gaseous and particle-bound compounds in atmospheric samples. The NT device is constructed as a micro trap by placing some small sorbents in a needle. Aerosol samples are collected by drawing air through the NT device with a pump. The trapped components contain both gaseous chemical compounds as well as particulate matter present in the sample. The total concentration of analytes in an aerosol sample can be obtained on the basis of the exhaustive sampling mode of the NT device. Direct SPME is simultaneously used to determine gaseous compound in the aerosol sample. As a result, the SPME and NT devices, when used together, can provide a complete solution to highly efficient and accurate aerosol studies. The theoretical considerations of SPME and NT devices for aerosol sampling are validated by sampling seasalt aerosol, barbecue, and cigarette smoke. The concentrations of PAHs in the different phases of the samples are few ng/L. Result analysis shows that SPME and the NT device demonstrate several important advantages such as simplicity, convenience, and low costs under laboratory and on-site field sampling conditions.  相似文献   

13.
The properties of a thin sheet of poly(dimethylsiloxane) (PDMS) membrane as an extraction phase were examined and compared to solid-phase microextraction (SPME) PDMS-coated fiber for application to semivolatile analytes in direct and headspace modes. This new PDMS extraction approach showed much higher extraction rates because of the larger surface area to extraction-phase volume ratio of the thin film. Unlike the coated rod formats of SPME using thick coatings, the high extraction rate of the membrane SPME technique allows larger amounts of analytes to be extracted within a short period of time. Therefore, higher extraction efficiency and sensitivity can be achieved without sacrificing analysis time. In direct membrane SPME extraction, a linear relationship was found between the initial rate of extraction and the surface area of the extraction phase. However, for headspace extraction, the rates were somewhat lower because of the resistance to analyte transport at the sample matrix/headspace barrier. It was found that the effect of this barrier could be reduced by increasing either agitation, temperature, or surface area of the sample matrix/headspace interface. A method for the determination of PAHs in spiked lake water samples was developed based on the membrane PDMS extraction coupled with GC/MS. A linearity of 0.9960 and detection limits in the low-ppt level were found. The reproducibility was found to vary from 2.8% to 10.7%.  相似文献   

14.
The kinetics of the desorption of analytes from a SPME fiber into an agitated sample matrix was studied, and a theoretical model was proposed to describe the dynamic desorption process, based on the steady-state diffusion of analytes in the extraction phase and in the boundary layer. It was found that the desorption of analytes from a SPME fiber into an agitated sampling matrix is isotropic to the absorption of the analytes onto the SPME fiber from the sample matrix under the same agitation conditions, and this allows for the calibration of absorption using desorption. The calibration was accomplished by exposing a SPME fiber, preloaded with a standard, to an agitated sample matrix, during which desorption of the standard and absorption of analytes occurred simultaneously. When the standard was the isotopically labeled analogue of the target analyte, the information from the desorption process, i.e., time constant a, could be directly used for estimating the concentration of the target analyte. When the standard varied from the target analyte, the mass-transfer coefficient of the analyte could be extrapolated from that of the standard. These predictions agree well with experimental results. This approach facilitates the full integration of sampling, sample preparation, and sample introduction, especially for on-site or in vivo investigations, where the addition of standards to the sample matrix, or control of the velocity of the sample matrix, is very difficult.  相似文献   

15.
Fu H  Zhu D 《Analytical chemistry》2012,84(5):2366-2372
A novel fiber coated with silicalite-1 for solid-phase microextraction (SPME) was prepared by in situ hydrothermal growth method. Six substituted benzenes (nitrobenzene, p-dichlorobenzene, m-dichlorobenzene, 1,3,5-trichlorobenzene, p-chloronitrobenzene, and m-chloronitrobenzene) were employed as model analytes. The fiber exhibited high thermal stability (little weight loss up to 600 °C) and high chemical stability (no loss of function after sequential immersion in 0.1 M HCl, 0.01 M NaOH, methanol, and n-hexane each for at least 4 h). Compared with commercial fibers, 3-6 times higher extraction efficiencies were shown on the fiber for mono- and p-substituted benzenes. Under the preoptimized conditions, the fiber afforded satisfactory enhancement factors (517-1292), wide linear ranges (more than 2 orders of magnitude), low limits of detection (0.001-0.130 μg/L), and acceptable repeatability (<9.6%) and reproducibility (<8.8%). Furthermore, the fiber offered distinct shape-selectivity attributed to the uniform molecular-scale pore structure of silicalite-1. The ratios of extraction were approximately 70 between p-dichlorobenzene and 1,3,5-trichlorobenzene, 30 between p-chloronitrobenzene and m-chloronitrobenzene, and 3 between p-dichlorobenzene and m-dichlorobenzene. After pore narrowing by surface modification with SiCl(4), the selectivity for p-dichlorobenzene over m-dichlorobenzene was further enhanced by another 10 times. Finally, the fiber was successfully applied to analysis of a real water sample.  相似文献   

16.
A needle trap device (NTD) and commercial poly(dimethylsiloxane) (PDMS) 7-microm film thickness solid-phase microextraction (SPME) fibers were used for the sampling and analysis of aerosols and airborne particulate matter (PM) from an inhaler-administered drug, spray insect repellant, and tailpipe diesel exhaust. The NTD consisted of a 0.53-mm o.d. stainless steel needle having 5 mm of quartz wool packing section near the needle tip. Samples were collected by drawing air across the NTD with a Luertip syringe or via direct exposure of the SPME fiber. The mass loading of PM was varied by adjusting the volume of air pulled through the NTD or by varying the sampling time for the SPME fiber. The air volumes ranged from 0.1 to 50 mL, and sampling times varied from 10 s to 16 min. Particulates were either trapped on the needle packing or sorbed onto the SPME fiber. The devices were introduced to a chromatograph/mass spectrometer (GC/MS) injector for 5 min desorption. In the case of the NTD, 10 microL of clean air was delivered by a gas-tight syringe to aid the introduction of desorbed analytes. The compounds sorbed onto particles extracted by the SPME fiber or trapped in the needle device were desorbed in the injector and no carry-over was observed. Both devices performed well in extracting airborne polycyclic aromatic hydrocarbons (PAHs) in diesel exhaust, triamcinolone acetonide in a dose of asthma drug and DEET in a dose of insect repellant spray. Results suggest that the NTDs and PDMS 7-microm fibers can be used for airborne particulate sampling and analysis, providing a simple, fast, reusable, and cost-effective screening tool. The advantage of the SPME fiber is the open-bed geometry allowing spectroscopic investigations of particulates; for example, with Raman microspectroscopy.  相似文献   

17.
The automation of solid-phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was accomplished using a 96 multiwell plate format, a SPME multifiber device, two orbital shakers, and a three-arm robotic system. Extensive optimization of the proposed setup was performed including coating selection, optimization of the fiber coating procedure, confirmation of uniform agitation in all wells, and the selection of the optimal calibration method. The system allows the use of pre-equilibrium extraction times with no deterioration in method precision due to reproducible timing of extraction and desorption steps and reproducible positioning of all fibers within the wells. The applicability of the system for the extraction of several common drugs is demonstrated. The optimized multifiber SPME-LC-MS/MS was subsequently fully validated for the high-throughput analysis of diazepam, lorazepam, nordiazepam, and oxazepam in human whole blood. The proposed method allowed the automated sample preparation of 96 samples in 100 min, which represents the highest throughput of any SPME technique to date, while achieving excellent accuracy (87-113%), precision (相似文献   

18.
固相微萃取-气相色谱法测试凹印油墨VOC的条件优化研究   总被引:1,自引:1,他引:0  
李亚玲  魏建华  孙雯  刘畅  杨雪  曹海燕 《包装工程》2012,33(11):57-59,90
采用固相微萃取和气相色谱相结合的技术,建立了凹印油墨VOC的测试方法。通过对萃取时间、萃取温度和萃取纤维涂层膜厚等影响萃取效率的因素进行研究,获得了优化的测试条件。结果表明,气相色谱柱温箱升温程序为:50℃开始以50℃/min升至200℃,然后再以10℃/min升至230℃,保持5min;固相微萃取最佳萃取条件为:萃取时间20min,萃取温度80℃,采用100μm PDMS的萃取纤维。  相似文献   

19.
An integrated microsampling approach based on solid-phase microextraction (SPME) was developed to provide a complete solution to highly efficient and accurate pharmacokinetic studies. The microsampling system included SPME probes that are made of poly(ethylene glycol) (PEG) and C18-bonded silica, a fast and efficient sampling strategy with accurate kinetic calibration, and a high-throughput desorption device based on a modified 96-well plate. The sampling system greatly improved the quantitative capability of SPME in two ways. First, the use of the C18-bonded silica/PEG fibers minimized the competition effect from analogues of the target analytes in a complicated sample matrix such as blood or plasma samples, which is a common problem associated with solid coating SPME fibers for quantitative analysis. Moreover, the C18-bonded silica/PEG fibers provide high sensitivity and a large dynamic range that covers the possible sample concentration range during diazepam administration and elimination. Second, the kinetic calibration method offers more accurate quantitation than the calibration curve method for in vivo SPME, because it compensates for convection and matrix effects during sampling. Therefore, it is especially suitable as a fast sampling technique for pre-equilibrium SPME. Furthermore, with the high-throughput desorption device, the integrated system offers compactness and high efficiency. Its feasibility for in vivo sampling was demonstrated by monitoring diazepam pharmacokinetics and validated by conventional chemical assays and equilibrium SPME. In addition, we propose a simple method to determine the apparent distribution constant between an SPME fiber and a blood matix (Kfs) and the distribution constant between an SPME fiber and a pure PBS buffer sample matrix (Kfb). As a result, both total and free concentrations of the drug and its metabolites can be detected simultaneously. Accordingly, the binding constants to the blood matrix can be obtained, which are of special significance for clinical diagnosis and drug discovery.  相似文献   

20.
A method based on solid-phase microextraction (SPME) and capillary electrophoresis/mass spectrometry (CE/ MS) is described for determining simultaneously five acidic pesticides (o-phenylphenol, ioxynil, haloxyfop, acifluorfen, picloram) in fruits. The CE device is coupled to an electrospray interface by a commercial sheath-flow adapter. Emphasis is placed on fulfillment of the speed and sensitivity requirements. The best separation is achieved using 32 mM ammonium formate/acid formic buffer at pH 3.1, with a working voltage of 25 kV. The MS detection of the five pesticides was performed in negative ionization mode. Full-scan spectra with base peaks corresponding to [M-H]- were obtained except for acifluorfen, which gives [M-H-CO2]- as most abundant ion. Compared with the conventional EC-UV, the limits of detection were lower for acifluorfen, haloxyfop, ioxynil, and picloram, by a factor of 20, 20, 50, and 2, respectively. Extraction involved fruit sample homogenization with an acetone-water solution (5:1), filtration, and acetone evaporation prior to fiber extraction. SPME conditions such as time, pH, ion strength, stationary phase of the fiber, sample matrix, and desorption solvents were examined. The recovery of the analytes ranged from 7 to 94%, and the relative standard deviation was between 3 and, 13%. The method was found to be linear between 0.02 and 500 mg kg(-1) with correlation coefficients ranging from 0.992 to 0.997. The limits of quantification were from 0.02 to 5 mg kg(-1). The optimized method was successfully applied to the analysis of acid pesticides in fruit samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号