首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This study measured ultrafine particle (UFP) levels and their size distributions in the Hsuehshan tunnel from August 12 to 19, 2009, using a Fast Mobility Particle Sizer. Measurement results demonstrate that traffic volume, the slope of the tunnel (downhill or uphill) and the ventilation system affected UFP levels inside the tunnel. Average UFP levels were about 1.0 × 105–3.0 × 105 particles cm?3 at normal traffic volume. A traffic jam in the tunnel could raise UFP levels to over 1.0 × 106 particles cm?3. UFP levels at the uphill bore were significantly higher than those at the downhill bore due to high UFP levels exhausted from vehicles going uphill at high engine load conditions. UFP levels eventually diluted 10–50% with fresh air from tunnel air shafts. Gas-to-particle condensation conversion markedly produced nucleation mode particles at the tunnel entrance section. Observations also showed Aitken mode particles markedly formed by coagulation growth of nucleation mode particles in the tunnel middle section and exit section. That is, the particle size distributions changed significantly inside the tunnel. Measurement results suggest that particles in the Aitken mode in the long tunnel governed UFP levels.  相似文献   

2.
In the present study, more realistic and easily adaptable input parameters have been used with a view to investigating the long-range air quality analysis for the dispersion of air pollutants emitted from an area source with a multiple box model. The model formulation has been discussed at length for the ground level sources when convective conditions prevail. The routine meteorological observations have been used for the computation of sensible surface heat flux, friction velocity and mixing depth. A radiation model provides the estimates of the sensible surface heat flux. Based on the similarity theory, an iterative procedure has been adopted for the estimation of friction velocity which provides a coupling of radiation computation and the surface layer of the planetary boundary layer through surface heat flux expression. The important parameters—wind speed and eddy diffusivity profiles—have been derived and have been used to obtain the concentration patterns as hourly averages. The procedure could be easily adopted where observed meteorological parameters may be used for studying the dispersal of pollutants from the ground level sources.  相似文献   

3.
Because estuaries and coastal regions are particularly susceptible to nutrient over-enrichment due to their close proximity to source-rich regions, a goal of the BRACE study was to improve estimates of nitrogen air/sea transfer rates in the Tampa Bay Estuary. Our objective was to critically evaluate two air/sea gas exchange models to determine their efficacy for use in a coastal region, with the ultimate goal of improving nitrogen exchange estimates in Tampa Bay. We used meteorological data and oceanographic parameters collected hourly at an instrumented tower located in Middle Tampa Bay, Florida. The data was used to determine the friction velocity and the turbulent flux of heat and moisture across the air/sea interface and then compared with modeled parameters at the same offshore site. On average both models underpredicted sensible heat flux and there was considerable scatter in the data during stable conditions, indicating that nitrogen gas exchange rates may also be underestimated. Model improvement, however, was observed with friction velocity comparisons. Model inter-comparisons of sensible heat flux and friction velocity suggest excellent agreement between the TOGA COARE and the NOAA Buoy models, but model estimated heat transfer coefficients and latent heat fluxes did not agree as well. Based on our analysis, we conclude that both models are suitable for use in a coastal environment to estimate nitrogen air/sea gas exchange, although the NOAA Buoy model requires fewer meteorological inputs. However, if the purpose is to conduct more sophisticated microscale modeling of air/sea interactions, we recommend the TOGA COARE model.  相似文献   

4.
Sonic anemometer turbulence measurements were made at Summit, Greenland during summer 2004 and spring 2005. These measurements allow for the characterization of the variability of the atmospheric boundary layer at this site by describing seasonal and diurnal changes in sensible heat flux and boundary layer stability as well as providing estimates of mixing layer height. Diurnal sensible heat fluxes at Summit ranged from −18 to −2 W m−2 in the spring and from −7 to +10 W m−2 in the summer. Sustained stable surface layer conditions and low wind speeds occured during the spring but not during the summer months. Unstable conditions were not observed at Summit until late April. Diurnal cycles of convective conditions during the daytime (0700–1700 h local time) were observed throughout July and August. Boundary layer heights, which were estimated for neutral to stable conditions, averaged 156 m for the spring 2005 observations. Comparisons of the boundary layer characteristics of Summit with those from South Pole, Antarctica, provide possible explanations for the significant differences in snowpack and surface-layer chemistry between the two sites.  相似文献   

5.
Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NOx), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter < 100 nm), fine particulate matter (PM2.5, diameter < 2.5 μm) mass and carbon content and several particle-bound organics were examined. All roadways had an upwind stationary sampling location, one or two fixed downwind sample locations and a mobile monitoring platform that characterized pollutant concentrations fall-off with increased distance from the roadways. Data reported in this paper focus on UFP while other pollutants and near-roadway chemical processes are examined in a companion paper. Traffic volume, especially heavy-duty traffic, wind speed, and proximity to the road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100–150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No consistent pattern was observed for UFPs under parallel wind conditions. However, regardless of wind conditions, particle concentrations returned to background levels within a few hundred meters of the roadway. Within measured UFP size ranges, smaller particles (6–25 nm) decayed faster than larger ones (100–300 nm). Similar decay rates were observed among UFP number, surface, and volume.  相似文献   

6.
Ultrafine particles (UFP, diameter < 100 nm), as reported in recent findings of toxicological and epidemiological studies, could represent health and environmental risks. Motor vehicle emissions usually constitute the most significant source of UFP in an urban environment. Number, surface and mass concentration of particles were determined at increasing distances from the most important Italian road: the “Autostrada del Sole” A1 highway. Particles in the size range from 0.0059 to 20 μm were measured with a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS) spectrometers.The A1 highway was selected because it is characterized by two different traffic conditions: a daily and a weekly traffic. During the weekdays the average traffic flow was about 50 vehicles min?1 with more than 30% of vehicles being heavy-duty (HD) diesel trucks. The weekly traffic component is characterized by an increased traffic up to approximately 100 vehicles min?1 during Monday mornings and Friday afternoons because of light-duty vehicles, with substantial reduction of the percentage of HD diesel trucks (typically only 10%).The purpose of this study is the characterization of the A1 highway in terms of evolution of particle size distribution (PSD) and total number concentration at different distances from the highway. This analysis is interesting because Italian traffic presents a higher i) percentage of diesel light-duty vehicles and ii) mean traffic speed in respect to US and Australian traffics. Particle number, surface and mass, exponentially decreases as one moves away from the freeway, whereas UFP number concentration measured at 400 m downwind from the freeway is indistinguishable from upwind background concentration.  相似文献   

7.
The ECLAP experiment has been performed during the winter of 1995 in order to study the influence of the urban area of Paris on the vertical structure and diurnal evolution of the atmospheric boundary layer, in situations favourable to intense urban heat island and pollution increase. One urban site and one rural site have been instrumented with sodars, lidars and surface measurements. Additional radiosondes, 100 m masts and Eiffel Tower data were also collected. This paper gives a general overview of this experiment, and presents results of the analysis of four selected days, characterized by various wind directions and temperature inversion strengths. This analysis, which consists in a comparison between data obtained in the two sites, has been focused on three parameters of importance to the ABL dynamics: the standard deviation of vertical velocity, the surface sensible heat flux, and the boundary layer height. The vertical component of turbulence is shown to be enhanced by the urban area, the amplitude of this effect strongly depending on the meteorological situation. The sensible heat flux in Paris is generally found larger than in the rural suburbs. The most frequent differences range from 25–65 W m-2, corresponding to relative differences of 20–60%. The difference of unstable boundary layer height between both sites are most of the time less than 100 m. However, sodar and temperature data show that the urban influence is enhanced during night-time and transitions between stable and unstable regimes.  相似文献   

8.
Real time number concentrations and size distributions of ultrafine particles (UFPs, diameter <100 nm) and time integrated black carbon, PM2.5 mass, and chemical species were studied at the Los Angeles International Airport (LAX) and a background reference site. At LAX, data were collected at the blast fence (∼140 m from the takeoff position) and five downwind sites up to 600 m from the takeoff runway and upwind of the 405 freeway. Size distributions of UFPs collected at the blast fence site showed very high number concentrations, with the highest numbers found at a particle size of approximately 14 nm. The highest spikes in the time series profile of UFP number concentrations were correlated with individual aircraft takeoff. Measurements indicate a more than 100-fold difference in particle number concentrations between the highest spikes during takeoffs and the lowest concentrations when no takeoff is occurring. Total UFP counts exceeded 107 particles cm−3 during some monitored takeoffs. Time averaged concentrations of PM2.5 mass and two carbonyl compounds, formaldehyde and acrolein, were statistically elevated at the airport site relative to a background reference site. Peaks of 15 nm particles, associated with aircraft takeoffs, that occurred at the blast fence were matched with peaks observed 600 m downwind, with time lags of less than 1 min. The results of this study demonstrate that commercial aircraft at LAX emit large quantities of UFP at the lower end of currently measurable particle size ranges. The observed highly elevated UFP concentrations downwind of LAX associated with aircraft takeoff activities have significant exposure and possible health implications.  相似文献   

9.
A tall tower flux measurement setup was established in metropolitan Houston, Texas, to measure trace gas fluxes from emission sources in the urban surface layer. We describe a new relaxed eddy accumulation (REA) system combined with a dual-channel GC-FID used for VOC flux measurements, focusing on benzene, toluene, ethylbenzene and xylenes (BTEX) results. Ambient air sampled from 60 m above the ground next to a sonic anemometer was subsampled by a membrane pump and pushed into an REA valve system with two Teflon bag reservoirs, then transferred to two preconcentration units for thermal desorption. We discuss the performance of our system and the selected BTEX measurement results using approximately 8 weeks of data (May 22–July 22, 2008), presenting diurnal variations of concentrations and fluxes of these traffic tracers. The measured values exhibited diurnal cycles with dominant morning and midday peaks during weekdays related to rush hour traffic and additional weekday daytime toluene and xylenes emissions. Local evaporative emissions, likely from solvent usage, significantly contributed to the measured fluxes. We upscaled measured emissions to the county level using a high resolution land cover data set and compared the results with EPA’s National Emission Inventory (NEI).  相似文献   

10.
In this study, the relationship between the form and materials of urban blocks and sensible heat flux from total surfaces was analyzed in the case of `Tama New Town', which is one of the largest housing developments in Japan and is under continuing development. First, urban blocks were divided into five categories depending on the building plot types. The characteristics of the form and thermal properties of each building, as well as the land cover condition (area of vegetation, bare soil, asphalt pavement, and built area) of each category was considered. Furthermore, 6 urban blocks were selected for numerical simulation of heat balance of the total surfaces, and sensible heat flux from the total surfaces of each urban block on clear sky summer day was calculated. It was confirmed that the influence of the direction that buildings faced and floor area ratio was as great as that of building materials upon the amount of sensible heat flux in each urban block.  相似文献   

11.
This paper presents results from a study conducted in southwest Detroit from July 20 to July 30, 2002, to characterize ambient ultrafine particles (dP < 0.1 microm), and to examine the effect of local sources and meteorological parameters on the ultrafine number concentration and size distribution. The number concentrations of ambient particles in the size range of 0.01-0.43 microm were obtained from a scanning mobility particle sizer (SMPS). Meteorological parameters including ambient temperature, relative humidity, wind speed, wind direction, rainfall, and solar radiation flux were also monitored concurrently atop a 10-m tower. On average, ultrafine particles ranged from 1.4 x 10(4) to 2.5 x 10(4) cm(-3), with significant diurnal and daily variations, and accounted for approximately 89% of the total number concentration (0.01 < dP < 0.43 microm). Time-series plots of the 5-min number concentrations revealed that peak concentrations often occurred during morning rush hour and/or around solar noon when photochemical activity was at a maximum. The morning traffic-related peak coincided with the NOx peak, whereas the photochemical-related peak correlated with solar radiation flux. On some days, the noon peak concentration was many times higher than the morning peak concentration. Although the number size distribution varied considerably over the course of the study, it typically exhibited one to three modes, with diameters around 0.01, 0.05, and 0.09 microm. Analysis of the influence of wind direction indicated that stationary sources could be one of the contributors to elevated ultrafine particle concentration. Overall, the data indicated that fossil fuel combustion and atmospheric gas-to-particle conversion of precursor gases are the major sources of ultrafine particles in the southwest Detroit area during the summer.  相似文献   

12.
Continuous measurements of particle number concentrations were performed in Rochester, NY, and Toronto, Ontario, Canada during the 2003 calendar year. Strong seasonal dependency in particle number concentration was observed at two sites. The average number concentration of ambient particles was 9670 +/- 6960 cm(-3) in Rochester, whereas in Toronto the average number of particles was 28,010 +/- 13,350 cm(-3). The particle number concentrations were higher in winter months than in summer months by a factor of 1.5 in Rochester and 1.6 in Toronto. In general, there were also distinct diurnal variations of aerosol number concentration. The highest weekdays/weekends ratio of number concentration was typically observed during the rush-hour period in winter months with a ratio of 2.1 in Rochester and 2.0 in Toronto. The correlation in the total particle number concentrations between the two urban sites was stronger in winter because of the common urban traffic patterns, but weaker in summer because of local sulfur dioxide (SO2)-related particle formation events in Rochester in the summer. Strong morning particle formation events were frequently observed during colder winter months. Good correlations between particle number and carbon monoxide (CO) as well as temperature suggested that motorvehicle emissions lead to the formation of new particles as the exhaust mixes with the cold air. Regional nucleation and growth events frequently occurred in April. Local SO2-related particle formation events most frequently occurred in August. SO2 and UV-B were highly correlated with particle concentration, suggesting a high association of photochemical processes with these local events. A high directionality in a northerly direction was observed for particle number and SO2, indicating the influence of point sources located north of Rochester.  相似文献   

13.
Incinerators are claimed to be responsible of particle and gaseous emissions: to this purpose Best Available Techniques (BAT) are used in the flue-gas treatment sections leading to pollutant emission lower than established threshold limit values. As regard particle emission, only a mass-based threshold limit is required by the regulatory authorities. However; in the last years the attention of medical experts moved from coarse and fine particles towards ultrafine particles (UFPs; diameter less than 0.1 microm), mainly emitted by combustion processes. According to toxicological and epidemiological studies, ultrafine particles could represent a risk for health and environment. Therefore, it is necessary to quantify particle emissions from incinerators also to perform an exposure assessment for the human populations living in their surrounding areas. A further topic to be stressed in the UFP emission from incinerators is the particle filtration efficiency as function of different flue-gas treatment sections. In fact, it could be somehow important to know which particle filtration method is able to assure high abatement efficiency also in terms of UFPs. To this purpose, in the present work experimental results in terms of ultrafine particle emissions from several incineration plants are reported. Experimental campaigns were carried out in the period 2007-2010 by measuring UFP number distributions and total concentrations at the stack of five plants through condensation particle counters and mobility particle sizer spectrometers. Average total particle number concentrations ranging from 0.4 x 10(3) to 6.0 x 10(3) particles cm(-3) were measured at the stack of the analyzed plants. Further experimental campaigns were performed to characterize particle levels before the fabric filters in two of the analyzed plants in order to deepen their particle reduction effect; particle concentrations higher than 1 x 10(7) particles cm(-3) were measured, leading to filtration efficiency greater than 99.99%.  相似文献   

14.
We have observed a wide area of air pollutant impact downwind of a freeway during pre-sunrise hours in both winter and summer seasons. In contrast, previous studies have shown much sharper air pollutant gradients downwind of freeways, with levels above background concentrations extending only 300 m downwind of roadways during the day and up to 500 m at night. In this study, real-time air pollutant concentrations were measured along a 3600 m transect normal to an elevated freeway 1–2 h before sunrise using an electric vehicle mobile platform equipped with fast-response instruments. In winter pre-sunrise hours, the peak ultrafine particle (UFP) concentration (~95 000 cm?3) occurred immediately downwind of the freeway. However, downwind UFP concentrations as high as ~40 000 cm?3 extended at least 1200 m from the freeway, and did not reach background levels (~15 000 cm?3) until a distance of about 2600 m. UFP concentrations were also elevated over background levels up to 600 m upwind of the freeway. Other pollutants, such as NO and particle-bound polycyclic aromatic hydrocarbons, exhibited similar long-distance downwind concentration gradients. In contrast, air pollutant concentrations measured on the same route after sunrise, in the morning and afternoon, exhibited the typical daytime downwind decrease to background levels within ~300 m as found in earlier studies. Although pre-sunrise traffic volumes on the freeway were much lower than daytime congestion peaks, downwind UFP concentrations were significantly higher during pre-sunrise hours than during the daytime. UFP and NO concentrations were also strongly correlated with traffic counts on the freeway. We associate these elevated pre-sunrise concentrations over a wide area with a nocturnal surface temperature inversion, low wind speeds, and high relative humidity. Observation of such wide air pollutant impact area downwind of a major roadway prior to sunrise has important exposure assessment implications since it demonstrates extensive roadway impacts on residential areas during pre-sunrise hours, when most people are at home.  相似文献   

15.
Articles have recently been published on aerosol size distributions and number concentrations in cities, however there have been no studies on transport of these particles. Eddy covariance measurements of vertical transport of aerosol in the size range 11 nm<Dp<3 μm are presented here. The analysis shows that typical average aerosol number fluxes in this size range vary between 9000 and 90,000 cm−2 s−1. With concentrations between 3000 and 20,000 cm−3 this leads to estimates of particle emission velocity between 20 and 75 mm s−1. The relationships between number flux and traffic activity, along with emission velocity and boundary layer stability are demonstrated and parameterised. These are used to derive an empirical parameterisation for aerosol concentration in terms of traffic activity and stability. The main processes determining urban aerosol fluxes and concentrations are discussed and quantified where possible. The difficulties in parameterising urban activity are discussed.  相似文献   

16.
Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×103 cm−3 and on weekends (5.9±0.2)×103 cm−3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×104 and 9.6×104 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration.  相似文献   

17.
The first measurements of the energy balance fluxes of a dry, densely built-up, central city site are presented. Direct observation of the net radiation, sensible and latent heat flux densities above roof-top in the old city district of Mexico City allow the heat storage flux density to be found by residual. The most important finding is that during daytime, when evaporation is very small (<4% of net radiation), and therefore sensible heat uses dominate (Bowen ratio >8), the uptake of heat by the buildings and substrate is so large (58%) that convective heating of the atmosphere is reduced to a smaller role than expected (38%). The nocturnal release of heat from storage is equal to or larger than the net radiation and sufficient to maintain an upward convective heat flux throughout most nights. It is important to see if this pattern is repeated at other central city, or dry urban sites, or whether it is only found in districts dominated by massive stone structures. These findings have implications for the height of the urban mixing layer and the magnitude of the urban heat island.  相似文献   

18.
The human health effects following exposure to ultrafine (<100 nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4 km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 104 p cm?3 to 5.95 × 106 p cm?3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 104 p cm?3 to 1.73 × 106 p cm?3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 104 p cm?3 and 1.55 × 105 p cm?3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore (R2 = 0.87), but much less so in the westbound bore (R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.  相似文献   

19.
Exposure to particles emitted by cooking activities may be responsible for a variety of respiratory health effects. However, the relationship between these exposures and their subsequent effects on health cannot be evaluated without understanding the properties of the emitted aerosol or the main parameters that influence particle emissions during cooking. Whilst traffic-related emissions, stack emissions and concentrations of ultrafine particles (UFPs, diameter < 100 nm) in urban ambient air have been widely investigated for many years, indoor exposure to UFPs is a relatively new field and in order to evaluate indoor UFP emissions accurately, it is vital to improve scientific understanding of the main parameters that influence particle number, surface area and mass emissions. The main purpose of this study was to characterise the particle emissions produced during grilling and frying as a function of the food, source, cooking temperature and type of oil. Emission factors, along with particle number concentrations and size distributions were determined in the size range 0.006–20 μm using a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). An infrared camera was used to measure the temperature field. Overall, increased emission factors were observed to be a function of increased cooking temperatures. Cooking fatty foods also produced higher particle emission factors than vegetables, mainly in terms of mass concentration, and particle emission factors also varied significantly according to the type of oil used.  相似文献   

20.
Concentrations of formaldehyde, acetaldehyde, acetone, propionaldehyde and butyraldehyde were measured in a semi-urban coastal site in the Gulf of Campeche, Mexico, during the winter, summer and autumn seasons. Measurements were carried out from 10 February 2004 to 16 November 2004. Carbonyl compound levels showed pronounced diurnal and seasonal variations. Maximum concentrations occurred between 13:00 h and 16:00 h, when vehicular traffic and photochemical activity were intense, and during the summer (when there was greater solar radiation). Only acetone during the first campaign (winter) did not correlate with temperature; it showed an inverse diurnal pattern, with higher concentrations during the night, probably due to a local and temporal source. The low concentrations of the main carbonyls found in this study, compared with the values reported for other urban areas, seem to indicate that air quality is still satisfactory in Carmen City.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号