首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two contemporary earthquakes originating in the central Himalayan arc and its foredeep (Sikkim earthquake of 18.09.2011, Mw 6.9, h: 10–60 (?) km and Bihar-Nepal earthquake of 20.08.1988, Mw 6.8, h: 57 km) are commonly associated with transverse lineaments/faults traversing the region. Such lineaments/faults form active seismic blocks defining promontories for the advancing Indian Craton. These actually produce conjugate shear faulting pattern suggestive of pervasive crustal interplay deep inside the mountains. Focal mechanism solutions allow inferring that large part of the current convergence across the central Himalayan arc is accommodated by lateral slip. Similar slip also continues unabated in the densely populated foredeep for distances up to several tens of kilometers south of the Main Boundary Thrust (MBT).  相似文献   

2.
Some allochthonous terranes form along active continental margins when slivers of forearc crust (or more extensive crust) are displaced along arc-parallel strike-slip faults. Such faults can be generated or reactivated in response to either oblique subduction or ridge collision (collision between an oceanic spreading ridge and the leading edge of the forearc). The mechanical and thermal effects of ridge collision are important factors in the origin crustal development of some forearc sliver terranes. Some of the effects of ridge collision are well illustrated in the South American forearc near the Chile triple junction (46° S) where the Chile Rise is colliding today. Impingement of the Chile Rise, in conjuction with oblique subduction, has caused an elongate forearc sliver terrane to move northward away from an extensional zone at the collision site. The terrane is bounded on the east by the arc-parallel Liquiñe-Ofqui fault system (LOF) which coincides roughly with the forearc-arc boundary, and on the south by the Golfo de Penas extensional basin. Fault fabrics, recent seismicity, and paleomagnetic results indicate a component of right-lateral strike-slip movement on the LOF. Neotectonic geomorphology and pre- and post-seismic vertical strain data from the 1960 Concepcíon earthquake indicate a west-down dip-slip component of movement. Three-dimensional finite element models of ridge collision in this region substantiate these shear strains and development of an arc-parallel fault at about 150–200 km from the trench.Development of the forearc crust during Miocene and younger collision also involved intrusion of silicic magmas and emplacement of the Pliocene(?) Taitao ophiolite within about 15 km of the trench. The ophiolite and the silicic magmas constitute anomalous additions to the forearc crust, and record tectonic events leading to the origin of the allochthonous terrane carrying them. Similar ophiolite/silicic plutonic associations may help unravel the origin of other allochthonous terranes.  相似文献   

3.
In order to decipher element mobility in ultrahigh-pressure (UHP) eclogite-facies metamorphic rocks during subduction and exhumation of continental crust, major-trace elements and Sr-Nd isotopes were systematically investigated for two continuous core segments of about 3 m length from the Chinese Continental Scientific Drilling (CCSD) project in the Sulu orogen. The segments are composed of lithological transitions between UHP eclogite and granitic gneiss. The eclogite exhibits a large variation in major and some trace elements such as LILE (e.g., Rb, Ba and K) and LREE, but a relatively limited range in HFSE and HREE. This suggests high mobility of LILE and LREE but immobility of HFSE and HREE during continental collision-zone metamorphism. Some eclogites have andesitic compositions with high SiO2, alkalis, LREE, and LILE but low CaO, MgO and FeO contents. These features likely result from chemical exchange with gneisses, possibly due to the metasomatism of felsic melt produced by partial melting of the associated gneisses during the exhumation. On the other hand, some eclogites appear to have geochemical affinity to refractory rocks formed by melt extraction as evidenced by strong LREE and LILE depletion and the absence of hydrous minerals. These results provide evidence of melt-induced element mobility in the UHP metamorphic rocks. In particular, large variations in the abundance of such elements as SiO2, LREE and LILE occur at the contact between eclogite and granitic gneiss, indicating their mobility between different slab components. Petrographic observations also show the presence of felsic veins on small scales in the UHP metamorphic rocks, demonstrating the occurrence of hydrous melt in local open-systems during the continental collision. As a whole, nevertheless, the protolith nature dictates the geochemical differences in both eclogite and granitic gneiss between the two core segments because mass transport during the subduction-zone metamorphism is principally dictated by the lithological differences at contact. The eclogite and granitic gneiss from the first core segment have high εNd(t) values, whereas those from the second core segment show relatively low εNd(t) values in concordance with majority of UHP metaigneous rocks outcropped along the Dabie-Sulu orogenic belt. Thus contrasting origins of bimodal igneous rocks were involved in the continental collision, demonstrating that the subducted continental crust is the magmatic product of active rifting margin during supercontinental breakup in the middle Neoproterozoic.  相似文献   

4.
The Hidaka metamorphic belt is situated at the junction of the Honshu and Kuril arcs in the axial zone of Hokkaido in northern Japan. Various migmatites, which occupy the core of the metamorphic belt, are classified as lens, sheet, falling star and dome facies on the basis of composition, scale and form as proposed by Harland (1956). Each facies is produced progressively. Movement is first lateral and then upwards at the sheet facies stage, followed by the development of the diapiric falling star and dome facies. Subsequently, the granitic phase starts to form from the lens facies, again within the migmatite sheets, leading to the emplacement of granitic plutons. The movement of the migmatite and granite bodies is controlled by the tangential stress field, as well as by the buoyancy in the gravitational field.  相似文献   

5.
Structural analysis carried out in the Tuscan Nappe (TN) in the southeastern sector of the Apuan Alps highlights a structural evolution much more complex than that proposed so far. The TN has been deformed by structures developed during four deformation phases. The three early phases resulted from a compressive tectonic regime linked to the construction of the Apenninic fold‐and‐thrust‐belt. The fourth phase, instead, is connected with the extensional tectonics, probably related to the collapse of the belt and/or to the opening of the Tyrrhenian Sea. Our structural and field data suggest the following. (1) The first phase is linked to the main crustal shortening and deformation of the Tuscan Nappe in the internal sectors of the belt. (2) The second deformation phase is responsible for the prominent NW–SE‐trending folds recognized in the study area (Mt. Pescaglino and Pescaglia antiforms and Mt. Piglione and Mt. Prana synforms). (3) The direction of shortening related to the third phase is parallel to the main structural trend of the belt. (4) The interference between the third folding phase and the earlier two tectonic phases could be related to the development of the metamorphic domes. The two directions of horizontal shortening induced buckling and vertical growth of the metamorphic domes, enhancing the process of exhumation of the metamorphic rocks. (5) The exhumation of the Tuscan Nappe occurred mostly in a compressive tectonic setting. A new model for the exhumation of the metamorphic dome of the Apuan Alps is proposed. Its tectonic evolution does not fit with the previously suggested core complex model, but is due to compressive tectonics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Phengite‐bearing schists of the northern Adula Nappe experienced a polymetamorphic and polycyclic evolution that was associated with five deformation episodes. Evidence of a pre‐Alpine metamorphic event is preserved within garnet cores of some amphibole‐bearing schists. The D1 and D2 deformation episodes are recorded by S1 and S2 foliations preserved only within metre‐scale domains of low‐D3 strain. S1 is a relict foliation. Blueschist‐facies conditions at 565 ± 10°C and 11.5 ± 1.5 kbar were attained during D2 and were associated with the development of isoclinal folding and an S2 foliation. The D3 episode took place at 665 ± 50°C and 11.5 ± 2.1 kbar and was responsible for the development of a transpositive S3 foliation. The D4 episode took place at T < 550 ± 10°C and was associated with the development of a discrete S4 foliation and S‐C structures. The D5 episode is recorded by sub‐vertical metre‐scale open folds or centimetre‐scale kinks. The structural and metamorphic evolution described here indicates that the northern and central parts of the Adula Nappe were distinct continental crustal fragments and were brought together under amphibolite‐facies conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
8.
刘家田井田总体构造特征为逆冲推覆构造,主要分为F2断层下盘基底构造单元和上盘推覆体构造单元。推覆体构造单元断层主要发育在推覆体前缘和西部软弱岩组一带,并伴有褶皱现象。基底单元东部断层较发育,构造相对简单;西部由于受推覆构造运动的影响,断层较发育,与F4断层呈"y"形组合特征,破坏了煤层的连续性,对煤层赋存产生较大影响。加强刘家田井田构造特征及控煤作用分析,对该井田深部及盘县逆冲断裂带附近找煤具有重要意义。  相似文献   

9.
The Phyllite-Quartzite (PQ) Nappe constitutes an external, allochthonous complex of the Hellenides on the island of Crete and shows a polyphase structural history. A first phase of deformation (F 1) produced recumbent isoclinal folds, a penetrative schistosity, and boudinage under high-P/low-T metamorphic conditions. Mylonite formation at the top of the PQ Nappe, below the overriding Tripolitza Nappe, further boudinage, and schistosity (S 2) represent a late tectono-metamorphic episode. Post-metamorphic small folds (F 3), lineations, and a crenulation cleavage were formed synchronously with transport of the PQ Nappe. A last phase (F 4) developed small folds, a fracture/crenulation cleavage, and large-scale folds after nappe movement. It is suggested that high-P/low-T metamorphism in the PQ rocks originated during subduction. Nappe transport of the higher, unmetamorphosed units, which were thrust over the PQ Nappe, began under waning metamorphic conditions. Subsequent transport of the PQ Nappe itself also occurred after the completion of metamorphism and after the formation of the mylonite at its top.  相似文献   

10.
One of the long recognized features of Himalayan geology is the apparent inversion of metamorphic sequences, as evidenced in both metamorphic parageneses and thermobarometric data. With the aid of an extended thermobarometric dataset from the Langtang Valley section of the Higher Himalayan Crystallines, it can be demonstrated that the relatively large uncertainties associated with traditional thermobarometric techniques severely limit the tectonic interpretation of metamorphic gradients across the Himalayas. We apply the recently developed Δ PT  approach, which significantly improves the precision to which pressure and temperature differences between samples may be calculated. High-precision thermobarometric data reveal an isothermal, rather than inverted, temperature array at Langtang, while the pressure data suggest significant structural complexity, with the Higher Himalayan Crystallines in the Langtang section comprising two distinct, possibly duplicated sequences, each having experienced considerable structural attenuation following metamorphism.  相似文献   

11.
Crustal architecture of the Himalayan metamorphic front in eastern Nepal   总被引:4,自引:0,他引:4  
The Himalayan Metamorphic Front consists of two basinal sequences deposited on the Indian passive margin, the Mesoproterozoic Lesser Himalayan Sequence and the Neoproterozoic–Cambrian Greater Himalayan Sequence. The current paradigm is that the unconformity between these two basinal sequences coincides with a crustal-scale thrust that has been called the Main Central Thrust, and that this acted as the fundamental structure that controlled the architecture of the Himalayan Metamorphic Front. Geological mapping of eastern Nepal and eight detailed stratigraphic, kinematic, strain and metamorphic profiles through the Himalayan Metamorphic Front define the crustal architecture. In eastern Nepal the unconformity does not coincide with a discrete structural or metamorphic discontinuity and is not a discrete high strain zone. In recognition of this, we introduce the term Himalayan Unconformity to distinguish it from high strain zones in the Himalayan Metamorphic Front. The fundamental structure that controls orogen architecture in eastern Nepal occurs at higher structural levels within the Greater Himalayan Sequence and we suggest the name; High Himal Thrust. This 100–400 m thick mylonite zone marks a sharp deformation discontinuity associated with a steep metamorphic transition, and separates the Upper-Plate from the Lower-Plate in the Himalayan Metamorphic Front. The high-T/moderate-P metamorphism at  20–24 Ma in the Upper-Plate reflects extrusion of material between the High Himal Thrust and the South Tibet Detachment System at the top of the section. The Lower-Plate is a broad schistose zone of inverted, diachronous moderate-T/high-P metamorphic rocks formed between  18 and 6 Ma. The High Himal Thrust is laterally continuous into Sikkim and Bhutan where it also occurs at higher structural levels than the Himalayan Unconformity and Main Central Thrust (as originally defined). To the west in central Nepal, the Upper-Plate/Lower-Plate boundary has been placed at lower structural levels, coinciding with the Himalayan Unconformity and has been named the Main Central Thrust, above the originally defined Main Central Thrust (or Ramgarh Thrust).  相似文献   

12.
The traverse of the Central Alps between Lake Constance and Lake Como (eastern Switzerland, northern Italy) allows the reconstruction of a cross-section through a collision belt some 140 km wide and 40 km deep. It can be described in terms of a series of structural zones (A–F), defined by the age and character of the latest phase of penetrative deformation affecting both basement and cover rocks, each zone showing a characteristic structural history. These zones do not coincide with the well-known tectono-stratigraphic Alpine subdivisions (Helvetic, Pennine, Austroalpine) which are based on gross geometry, facies and petrography. Zones A and B, in the north, developed during late Oligocene and Miocene times, affecting the Helvetic realm and the already overlying Pennine and Austroalpine units. Zone A is characterized by a steeply dipping penetrative cleavage SA, zone B by the same cleavage later modified by nappe-forming movements. Zone F, in the south, also developed during the late Oligocene and Miocene, first as a monoclinal flexure, later as a steeply dipping zone of mylonitization and cataclasis (foliation Sf), affecting Pennine and Austroalpine units. The final manifestation of these movements was the Tonale line and their net result was the uplift of the region to the north by about 20 km. Between these two belts lay an area in which late Oligocene-Miocene movements had little effect — structural zones C (Pennine), D (Pennine-Austroalpine transition) and E (Austroalpine). In zones C and D, the latest phase of penetrative deformation, resulting in large recumbent fold structures and a penetrative foliation Sc zone C, can be dated as late Eocene-early Oligocene. This seems to be related to the overriding of the Austroalpine nappe complex (zone E), which already showed the effects of a late Cretaceous orogeny.Unravelling these events backwards, reveals, at the Eocene—Oligocene boundary, a southward dipping subduction zone in the process of locking. Its mouth is full of upper Cretaceous-Eocene flysch; its throat is choked by the Pennine nappe complex, undergoing the sc ductile deformation. Before subduction, the Pennine nappe complex can best be described as a mega-mélange-a tectonic mixture of large fragments of continental basement, oceanic basement, trough-facies cover and platform-facies cover, already showing a complicated structural history. It is supposed that collision started in mid-Cretaceous times, not at a single subduction suture (trench), but by complicated surficial processes across a wide zone, as non-matching, rifted and thinned continental margins approached and small oceanic remnants were obducted. Post-mid-Oligocene events are essentially intra-plate compressional effects, combined with isostatic response.  相似文献   

13.
杨天南  薛传东 《地质学报》2022,96(5):1680-1696
运用板块构造理论解释造山带地质演化是当前地质学研究的难点,也是地质学基础理论创新的可能方向。包括印度 欧亚大陆侧向碰撞带在内的国内、外造山带构造演化尚未取得共识,大多表现为“大量高质量数据与诸多充满争议的演化模型共存”。产生这些争议的主要原因包括“高质量数据”的时、空分布样式未受足够重视、以及部分关键地质体物理属性鉴别存在争议。这些问题为地质学发展与理论创新留下了巨大的空间。持续10多年西南三江造山带区域地质填图、构造解析揭示了侧向碰撞带构造格架、地壳变形历史,提出了印度 欧亚大陆碰撞新的三阶段模型。这一研究实践表明,严格按照 “构造解析方法”体现的“三步骤”研究范式开展区域地质填图是造山带理论创新的基础与保障。区域地质填图是造山带研究中难度最大的工作之一,要求填图人员必须具备广泛、坚实的地质学理论基础,以及运用基础理论解决实际问题的能力。  相似文献   

14.
山西五台地区系舟山逆冲推覆构造地质特征   总被引:4,自引:0,他引:4  
系舟山逆冲推覆构造带位于中生代燕山造山带的西南端,分布于系舟山掀斜向斜的北西翼,形成于晚侏罗世晚期,空间上由一系列近平行排列的逆冲断裂组成,剖面上表现为侧幕展布的犁式逆冲断裂所构成的前陡、后缓的单冲式叠瓦状构造.主体由北西向南东方向逆冲,逆冲扩展方式为前展式,运移距离大于5.8 km.推覆构造中应力状态在横、纵向上呈现有规律的变化,根带以挤压为主的高角度逆冲断裂及复杂多级褶皱为主;中带以单剪为主,形成叠瓦状构造;锋带挤压作用增强,发育反冲断层和不对称褶皱.随着挤压应力的松弛减弱,山前形成规模较大的正断层.  相似文献   

15.
A nappe of amphibolite-facies metamorphic rocks of pre-Permian age in the southern Vanoise massif (the Arpont schist) has been affected by an Alpine HP/LT metamorphism. The first mesoscopically recognizable deformation (D1) post-dated the high-pressure peak (jadeitic pyroxene + quartz, glaucophane + ?lawsonite), and was associated with glaucophane + epidote. D1 produced a flat-lying schistosity and a NW-trending glaucophane lineation, and was probably associated with nappe displacement involving NW-directed subhorizontal shear. D2 formed small-scale folds and a foliation associated with chlorite + albite. The changing parageneses during the period pre-D1 to D1 to D2 suggest decreasing pressure, so that the deformation appears to have been related to the uplift history, rather than to the process of tectonic burial. D2 was followed by a static metamorphism (green biotite + chlorite + albite), possibly of Lepontine age. SE-directed backthrusting and folding (D3), and later differential uplift along steep faults, took place under low-grade conditions.  相似文献   

16.
The metamorphic rocks (Salkhalas) of Kishtwar area bear evidence of four phases of deformation and three episodes of metamorphism. The last deformational phase has however not initiated crystallization of new phase. The metamorphic crystallization was synkinematic to first phase of deformation with the rise in grade during post D1 phase which continued and reached its culmination in post D2 phase. The mineral assemblages suggest medium to high pressure Barrovian type metamorphism. This was followed by granitization leading to the formation of migmatites, augen & porphyroblastic gneisses in the late stages persisting till early D3 phase. The growth of index minerals suggest that the metamorphism was progressive in time and it predates migmatization and thrusting in the area. The metamorphism is not caused by the granite intrusion but is probably related to heat flow from the mantle in its disturbance during Himalayan orogeny.
Zusammenfassung Die metamorphen Gesteine (Salkhalas) aus dem Kishtwar Gebiet liefern einen Beweis für vier Deformationsphasen und drei Episoden einer Kristallisationsmetamorphose. Die letzte Deformationsphase ist mit keiner Neukristallisation verbunden. Die metamorphe Kristallisation verlief synkinematisch mit der ersten Deformationsphase (D1), setzte sich zunehmend fort über die zweite Phase (D2) hinaus und erreichte einen Höhepunkt in einer Post-D2-Phase. Die Mineralvergesellschaftungen zeigen einen Barrov-Typ von mäßigem bis hohem Druck. Dieser Metamorphose folgte eine Granitisierung, die mit einer Bildung von Migmatiten, und Augen- und porphyroklastischen Gneissen bis in die frühen Stadien der dritten Phase (D3) hinein verbunden war.Das Wachstum der Indexmineralien zeigt eine zeitlich fortschreitende Metamorphose, die vor der Migmatisierung und der tektonischen Einengung stattfand. Die Metamorphose ist weiterhin kein Resultat der Granitintrusion, sondern wahrscheinlich durch Wärmefluß aus dem Erdmantel verursacht.

Résumé Les roches métamorphiques (Salkhalas) de la région de Kishtwar mettent en évidence quatre phases de déformation et trois épisodes de métamorphisme. La dernière phase de déformation n'a toutefois pas entraîné de néveristallisatiòn. La cristallisation métamorphique a été syncinématique de la première phase déformative, avec élévation de son degré au cours de la phase consécutive á D1 qui continua et atteignit son plus haut point dans la phase postérieure á D2. Les associations minérales suggérent un métamorphisme Barrovien de moyenne à haute pression. Celui-ci a été suivi par une granitisation conduisant à la formation de migmatites, de gneiss oeillés et porphyroblastiques au cours des derniers stades qui ont persisté jusqu'au début de la phase D3. La croissance des minéraux index suggére que le métamorphisme fut progressif au cours du temps et qu'il ert antérieur à la migmatization et au charriage dans la région. Le métamorphisme n'a pas pour cause l'intrusion granitique, mais est probablement en relation avec le flux de chaleur au cours des perturbations dans le manteau.

(Salkhalas) 4- 3- . . (D1; , , (D2) . Barrov'a . , , , (D3). , . , , , .
  相似文献   

17.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   

18.
Petrological consequences of variations in metamorphic reaction affinity   总被引:3,自引:0,他引:3  
The extent to which kinetic barriers to nucleation and growth delay the onset of prograde metamorphic reaction, commonly known as overstepping, is related to the macroscopic driving force for reaction, termed reaction affinity. Reaction affinity is defined in the context of overstepping as the Gibbs free‐energy difference between the thermodynamically stable, but not‐yet‐crystallized, products and the metastable reactants. Mineral reactions which release large quantities of H2O, such as chlorite‐consuming reactions, have a higher entropy/volume change, and therefore a higher reaction affinity per unit of temperature/pressure overstep, than those which release little or no H2O. The former are expected to be overstepped in temperature or pressure less than the latter. Different methods of calculating reaction affinity are discussed. Reaction affinity ‘maps’ are calculated that graphically portray variations in reaction affinity on equilibrium phase diagrams, allowing predictions to be made about expected degrees of overstepping. Petrological consequences of variations in reaction affinity include: (i) metamorphic reaction intervals may be discrete rather than continuous, especially in broad multivariant domains across which reaction affinity builds slowly; (ii) reaction intervals may not correspond in a simple way to reaction boundaries and domains in an equilibrium phase diagram, and may involve metastable reactions; (iii) overstepping can lead to a ‘cascade effect’, in which several stable and metastable reactions involving the same reactant phases proceed simultaneously; (iv) fluid generation, and possibly fluid presence in general, may be episodic rather than continuous, corresponding to discrete intervals of reaction; (v) overstepping related to slowly building reaction affinity in multivariant reaction intervals may account for the commonly abrupt development in the field of certain index mineral isograds; and (vi) P–T estimation based on combined use of phase diagram sections and mineral modes/compositions on the one hand, and classical thermobarometry methods on the other, may not agree even if the same thermodynamic data are used. Natural examples of the above, both contact and regional, are provided. The success of the metamorphic facies principle suggests that these kinetic effects are second‐order features that operate within a broadly equilibrium approach to metamorphism. However, it may be that the close approach to equilibrium occurs primarily at the boundaries between the metamorphic facies, corresponding to discrete intervals of high entropy, dehydration reaction involving consumption of hydrous phases like chlorite (greenschist–amphibolite facies boundary) and mica (amphibolite–granulite facies boundary), and less so within the facies themselves. The results of this study suggest that it is important to consider the possibility of reactions removed from equilibrium when inferring the P–T–t evolution of metamorphic rocks.  相似文献   

19.
Field, structural, and metamorphic petrology investigations of Mabja gneiss dome, southern Tibet, suggest that contractional, extensional, and diapiric processes contributed to the structural evolution and formation of the domal geometry. The dome is cored by migmatites overlain by sillimanite-zone metasedimentary rocks and orthogneiss; metamorphic grade diminishes upsection and is defined by a series of concentric isograds. Evidence for three major deformational events, two older penetrative contractional and extensional events and a younger doming event, is preserved. Metamorphism, migmitization, and emplacement of a leucocratic dike swarm were syntectonic with the extensional event at mid-crustal levels. Metamorphic temperatures and pressures range from 500 °C and 150–450 MPa in chloritoid-zone rocks to 705±65 °C and 820±100 MPa in sillimanite-zone rocks. We suggest that adiabatic decompression during extensional collapse contributed to development of migmatites. Diapiric rise of low density migmatites was the driving force, at least in part, for the development of the domal geometry. The structural and metamorphic histories documented in Mabja Dome are similar to Kangmar Dome, suggesting widespread occurrence of these events throughout southern Tibet.  相似文献   

20.
Summary The structural and chemical characteristics of pseudotachylytes generated during seismic events along a Pan-African fault zone in Kenya document an evolution consisting of two principal steps. In the first stage, crushing of the host rock during the onset of frictional sliding led to preferential disruption of biotite and hornblende, due to their low fracture toughness and low shear yield strength. The products of this first stage are preserved as thin cataclasite zones along the margins of the pseudotachylyte veins. Melting of the crushed host rock occurred during the second stage, due to the heat generated by frictional sliding, grain size reduction, and the release of water from biotite and hornblende. The chemical and mineralogical composition of the cataclasite and the increasing temperature during seismic slip were the main factors that controlled the composition of two chemically distinct pseudotachylyte melts. During rapid cooling, amphibole microlites (melt 1) and plagioclase microlites (melt 2) crystallized from the two pseudotachylyte melts.
Die strukturelle und chemische Entwicklung von Pseudotachylyten während seismischer Ereignisse
Zusammenfassung Die strukturellen und chemischen Eigenschaften von Pseudotachylyten, die durch seismische Ereignisse entlang einer Pan-Afrikanischen Störungszone in Kenia erzeugt wurden, dokumentieren eine zweistufige Entwicklung. Im ersten Stadium, zu Beginn des Reibungsgleitens, führte die mechanische Zerkleinerung des Ausgangsgesteins zu einem bevorzugten Zerbrechen von Biotit und Hornblende, aufgrund ihrer geringen Bruch- und Scherfestigkeit. Die Produkte dieses ersten Stadiums sind in Form dünner Kataklasitzonen an den Rändern der Pseudotachylitgänge erhalten. Während des zweiten Stadiums kam es aufgrund der Reibungswärme, der Kornverkleinerung und dem bei der Zerstörung von Biotit und Hornblende freigesetzten Wasser zum Aufschmelzen des zermahlenen Gesteins. Die chemische und mineralogische Zusammensetzung der Kataklasite und die zunehmende Temperatur während des seismischen Gleitens waren die wesentlichen Faktoren, die die Zusammensetzung zweier chemisch unterschiedlicher Schmelzen kontrollierten. Während der schnellen Abkühlung kristallisierten Amphibol-Mikrolithe (Schmelze 1) und Plagioklas-Mikrolithe (Schmelze 2) aus den beiden Pseudotachylit-Schmelzen.


With 8 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号