首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copper(II) complexes of 3, 4‐hexanedione bis(piperidyl‐ and bis(hexamethyleneiminylthiosemicarbazone), H2Hxpip and H2Hxhexim, respectively, have been prepared and studied spectroscopically. The bis(thiosemicarbazones) have been characterized by their melting points, as well as IR, electronic and 1H NMR spectra. Upon formation of their copper(II) complexes, loss of the hydrazinic hydrogen atoms occurs, and the ligands coordinate as dianionic, tetradentate N2S2 ligands. The crystal structures of H2Hxpip, its 4‐coordinate copper(II) complex, [Cu(Hxpip)], and the related [Cu(Hxhexim)] have been determined by single crystal x‐ray diffraction. The nature of the four‐coordinate copper(II) complexes have also been characterized by ESR, IR, and electronic spectroscopy, as well as magnetic moments and elemental analyses.  相似文献   

2.
The complex [Cu(HGLYO)2(bipy)] ( I ) and two new copper(II) coordination polymers with the formulas {[Cu(GLYO)1‐x(ox)x(bipy)]·2.5H2O}n [GLYO = glycolato dianion, ox = oxalato dianion, bipy = 2, 2′‐bipyridine, x = 0.56 (in II ) or 0.71 (in III )] were synthesized using copper(II) glycolate as starting material and were characterized by IR, UV‐Vis and EPR spectrometry, by magnetic measurements ( II and III ), and by single‐crystal X‐ray diffractometry. Both II and III crystallized as one‐dimensional polymers composed of Cu2O2‐centred dimers with a Cu‐Cu distance of 3.282(1)Å (mean of II and III ) that are linked by Cu2(OCO)2 rings with a Cu‐Cu distance of 5.237(1)Å (mean of II and III ), both dianions acting as (μ‐1, 1, 2, 3) three‐way bridges connecting the two copper atoms of one dimer with one copper atom of a neighbouring dimer. Each copper atom is coordinated tetragonally in a CuN2O4 chromophore. In the mononuclear complex I the copper atom has a tetragonally distorted octahedral environment.  相似文献   

3.
Reaction of O,O′‐diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with 1,10‐diaza‐18‐crown‐6, 1,7‐diaza‐18‐crown‐6, or 1,7‐diaza‐15‐crown‐5 leads to the N‐thiophosphorylated bis‐thioureas N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 ( H2LI ), N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐18‐crown‐6 ( H2LII ) and N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐15‐crown‐5 ( H2LIII ). Reaction of the potassium salts of H2LI–III with a mixture of CuI and 2,2′‐bipyridine ( bpy ) or 1,10‐phenanthroline ( phen ) in aqueous EtOH/CH2Cl2 leads to the dinuclear complexes [Cu2(bpy)2LI–III] and [Cu2(phen)2LI–III] . The structures of these compounds were investigated by 1H, 31P{1H} NMR spectroscopy, and elemental analysis. The crystal structures of H2LI and [Cu2(phen)2LI] were determined by single‐crystal X‐ray diffraction. Extraction capacities of the obtained compounds in comparison to the related compounds 1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(=CMe2)CH2P(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(S)NHP(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 towards the picrate salts LiPic, NaPic, KPic. and NH4Pic were also studied.  相似文献   

4.
N,N‐bis(carboxymethyl)‐1‐adamantylamine acid (H2BCAA) or N‐(1‐adamantyl)‐iminodiacetic acid forms zwitterions that are intra‐stabilized by a ‘bifurcated’ N+‐H···O(carboxyl)2 interaction. In the crystal, both half‐protonated carboxyl groups of H2BCAA± are involved in linear O‐H···O inter‐molecular bridges of 2.46Å. In the studied BCAA‐CuII derivatives, the iminodiacetate‐moiety of the BCAA chelating ligand exhibits a mer‐NO2 conformation in [Cu(BCAA)(H2O)2] ( 1 ) and [Cu(BCAA)(Him)]2 ( 2 ), but a fac‐O2+N(apical) conformation in [Cu(BCAA)(bpy)(H2O)]·3.5H2O ( 3 ) [Him = imidazole, bpy =2,2′‐bipyridine]. In clear contrast, dipyridylamine (dpya), as auxiliary ligand, seems to be unable to promote the fac‐O2+N(apical) conformation in BCAA, as reveal the structures of two new salts with the trinuclear cation [(dpya)2Cu‐μ2‐Cu(BCAA)2‐Cu(dpya)2]2+ and the anions [Cu(BCAA)2]2? ( 4 ) or NO3? ( 5 ), respectively.  相似文献   

5.
Reduction of 2‐cyanopyridine by sodium in the presence of 3‐hexamethyleneiminylthiosemicarbazide produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim. Complexes with nickel(II), copper(II) and palladium(II) have been prepared and the following complexes structurally characterized: [Ni(Amhexim)OAc], [{Cu(Amhexim)}2C4H4O4]·2DMSO·H2O, [Cu(HAmhexim)Cl2] and [Pd(Amhexim)Cl]. Coordination is via the pyridyl nitrogen, imine nitrogen and thiolato or thione sulfur atom when coordinating as the anionic or neutral ligand, respectively. [{Cu(Amhexim)}2C4H4O4] is a binuclear complex with the two copper(II) ions bridged by the succinato group in [Cu‐(HAmhexim)Cl2] the Cu atom is 5‐coordinate and close to a square pyramid structure and in [Ni(Amhexim)OAc] and [Pd(Amhexim)Cl] the metal atoms are planar, 4‐coordinate.  相似文献   

6.
The crystal structure of a copper(II) complex of 2‐acetylpyridine 3‐piperidylthiosemicarbazone, [Cu(Acpip)2], indicates a tridentate, monoanionic ligand (i. e., pyridine nitrogen, imine nitrogen and thiolato sulfur atoms) and a bidentate, monanionic ligand (i. e., imine nitrogen and thiolato sulfur atoms). The stereochemistry approaches square pyramidal with the bidentate ligand occupying an apical (imine nitrogen atom) and basal (thiolato sulfur atom) position. The structure of a nickel(II) complex of 1‐phenylglyoxal N(4)‐diethylthiosemicarbazone, [Ni(Pg4DE)], has a 4‐6‐5 trichelate system rather than the 5‐5‐5 system common to bis(thiosemicarbazones). Coordination of the hydrazinic nitrogen atom of the “phenyl arm” along with the thiolato sulfur atom provides the 4‐membered chelate ring.  相似文献   

7.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

8.
Blue crystals of Cu2(phen)2(H2O)2(C5H6O4)2 were obtained from a CH3OH–H2O solution containing CuCl2, 1,10‐phenanthroline (phen), glutaric acid and Na2CO3. The crystal structure (monoclinic, P21/c (no. 14), a = 10.271(1), b = 10.595(1), c = 15.585(1) Å, β = 107.105(3)°, Z = 2, R = 0.0328, wR2 = 0.1027 for 3376 observed reflections (F ≥ 2σ(F ) out of 3728 unique reflections) is built up of dinuclear Cu2(phen)2(H2O)2(C5H6O4)2 complex molecules centered at inversion centers. The Cu atoms are square‐pyramidally coordinated by two nitrogen atoms of one bidentate chelating phen ligand and three oxygen atoms from two bridging glutarate anions and one axial water molecule (d(Cu–N) = 2.018(2), 2.024(2) Å; basal d(Cu–O) = 1.949(2), 1.956(2) Å; axial d(Cu–O) = 2.382(2) Å). Through the π‐π stacking interactions extending in a direction, the complex molecules are interlinked into 2 D layers parallel to the ac plane. The resultant 2 D layers are held together by hydrogen bonds between water molecules and uncoordinated carboxyl oxygen atoms.  相似文献   

9.
The reduction of 2‐cyanopyridine in the presence of N(4)‐ethylthiosemicarbazide produces 2‐pyridineformamide N(4)‐ethylthiosemicarbazone, HAm4E. Complexes with cobalt(III), nickel(II), copper(II), palladium(II) and platinum(II) have been prepared and characterized by molar conductivity, magnetic susceptibility and spectroscopic techniques. In addition, the crystal structures of HAm4E, [Co(Am4E)2](ClO4), [Ni(HAm4E)2](ClO4)2, and [Ni(HAm4E)2]Cl(OAc)·AcOH·H2O have been obtained. Coordination occurs through the pyridyl nitrogen, imine nitrogen and either the thione or thiolato sulphur atom when coordinating as the neutral or anionic ligand, respectively. Extensive hydrogen bonding occurs in both HAm4E and its metal complexes, with the amide hydrogen atoms being significant contributors.  相似文献   

10.
On the way towards novel supramolecular assemblies and polymers, several copper(II) complexes consisting of one terpyridine as well as one bipyridine ligand were synthesized in a one‐step reaction. The compounds were characterized by UV/VIS spectroscopy and MALDI‐TOF mass spectrometry. Single crystals were obtained and their structures were determined by X‐ray analyses.  相似文献   

11.
Eight new two‐ligand complexes of copper(II) with 1,10‐phenanthroline and one of four different α‐hydroxy‐carboxylic acids (glycolic, lactic, mandelic and benzylic) were prepared. The complexes of general formula [Cu(HL)2(phen)] · nH2O (HL = monodeprotonated acid) ( 1 – 4 ) were characterized by elemental analysis, IR, electronic and EPR spectroscopy, magnetic measurements and thermo‐gravimetric analysis. The complexes of general formulae [Cu(HL)(phen)2](HL) · H2L · nSolv [ 1 a (HL = HGLYO, n = 1, Solv = MeCN) and 3 a (HL = HMANO, n = 0)] and [Cu(L)(phen)(OH2)] · nH2O [ 2 a (L = LACO2–, n = 4) and 4 a (L = BENO2–, n = 2)] were characterized by X‐ray diffractometry. In all these latter a pentacoordinated copper atom has a basically square pyramidal coordination polyhedron, the distortion of which towards a trigonal bipyramidal configuration has been evaluated in terms of the parameter τ. In 1 a and 3 a there are three forms of α‐hydroxycarboxylic acid: a monodentate monoanion, a monoanionic counterion, and a neutral molecule lying in the outer coordination sphere; in 2 a and 4 a the α‐hydroxycarboxylic acid is a bidentate dianion coordinating through carboxyl and hydroxyl oxygens.  相似文献   

12.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures.  相似文献   

13.
Complexes of pyrrole‐2‐carbaldehyde thiosemicarbazones, [(C4H4N4)(H)C2=N3–N2(H)–C1(=S)–N1HR; R = Ph, H2L1; Me, H2L2; H, H2L3] with nickel(II) and palladium(II) are described. The reaction of nickel(II) acetate with H2L1 in methanol in 1:1 molar ratio yielded a complex of composition, [Ni(κ2‐N3,S‐HL1)2] ( 1 ). Likewise reaction of NiCl2 with H2L2 in 1:1 molar ratio in acetonitrile in the presence of triethylamine base followed by the addition of pyridine did not yield the anticipated [Ni(κ3‐N4,N3,S‐L2)(py)] complex, moreover a bis‐square‐planar complex, [Ni(κ2‐N3,S‐HL2)2] ( 2 ) was formed. However, in the presence of bipyridine (bipy), it yielded the addition product, [Ni(κ2‐N3,S‐HL2)22‐N, N‐bipy)] ( 3 ). Reaction of PdCl22‐P, P–PPh2–CH2–PPh2) with H2L3 in toluene in the presence of triethylamine has yielded a complex of stoichiometry, [Pd(κ3‐N4,N3,S–L3)(κ1‐P–PPh2–CH2–P(O)Ph2] ( 4 ). The ligands (HL1) and (HL2) are chelating to NiII metal atom as anions binding through N3,S‐donor atoms with pendant pyrrole groups, and (L3)2– is chelating to the PdII metal atom as dianion through N4,N3,S‐donor atoms (pyrrole is N4‐bonded). Fourth site in 4 is bonded to one P‐donor atom of PPh2–CH2–P(O)Ph2, whose pendant –PPh2 group involves auto oxidation to –P(O)PPh2 during reaction. These complexes were characterized using analytical data, IR, NMR (1H, 31P) spectroscopy and X‐ray crystallography. Complexes 1 , 2 , and 4 have square‐planar arrangement, whereas complex 3 is octahedral.  相似文献   

14.
Reactions of copper(I) halides (Cl, Br, I) with 1‐methyl‐1, 3‐imidazoline‐2‐thione (mimzSH) in 1 : 2 molar ratio yielded sulfur‐bridged dinuclear [Cu2X2(μ‐S‐mimzSH)21‐S‐mimzSH)2] (X = I, 1 , Br, 2 ; Cl, 3 ) complexes. Copper(I) iodide with 1,3‐imidazoline‐2‐thione (imzSH2) and Ph3P in 1 : 1 : 1 molar ratio has also formed a sulfur‐bridged dinuclear [Cu2I2(μ‐S‐imzSH2)2(PPh3)2] ( 4 ) complex. The central Cu(μ‐S)2Cu cores form parallelograms with unequal Cu–S bond distances {2.324(2), 2.454(3) Å} ( 1 ); {2.3118(6), 2.5098(6) Å} ( 2 ); {2.3075(4), 2.5218(4) Å} ( 3 ); {2.3711(8), 2.4473(8) Å} ( 4 ). The Cu···Cu separations, 2.759–2.877Å in complexes 1 – 3 are much shorter than 3.3446Å in complex 4 . The weak intermolecular interactions {H2CH···S# ( 2 ); CH···Cl# ( 3 ); NH···I# ( 4 )} between dimeric units in complexes 2 – 4 lead to the formation of linear 1D polymers.  相似文献   

15.
1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole (hnt), prepared by alkylation of 3‐nitro‐1, 2, 4‐triazole with 2‐chloroethanol, was found to react with copper(II) chloride and copper(II) perchlorate in acetonitrile/ethanol solutions giving complexes [Cu2(hnt)2Cl4(H2O)2] and[Cu(hnt)2(H2O)3](ClO4)2, respectively. They are the first examples of coordination compounds with a neutral N‐substituted 3‐nitro‐1, 2, 4‐triazole ligand. 1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole and the obtained complexes were characterized by NMR and IR spectroscopy, X‐ray, and thermal analyses. [Cu2(hnt)2Cl4(H2O)2] presents a dinuclear chlorido‐bridged complex in which hnt acts as a chelating bidentate ligand, coordinated to the metal by a nitrogen atom of the triazole ring and an oxygen atom of the nitro group, and the copper atoms are inconsiderably distorted octahedral coordination. [Cu(hnt)2(H2O)3](ClO4)2comprises a mononuclear complex cation, in which two nitrogen atoms of two hnt ligands in trans configuration and three water oxygen atoms form a square pyramidal environment around the copper atom, which is completed to an distorted octahedron with a bifurcated vertex due to two additional elongated Cu–O bonds with two nitro groups. In both complexes, Cu–O bonds with the nitro groups may be considered as semi‐coordinated.  相似文献   

16.
Four novel Schiff base nickel(II) and copper(II) complexes, derived from the end‐on (μ1,1‐N3) azide, end‐to‐end (μ1,3‐NCS) thiocyanate, or phenolate oxygen bridges, have been synthesized and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Ni2(L1)2(MeCN)2(μ1,1‐N3)2]·MeOH ( 1 ), the dinuclear double end‐on azide‐bridged [Ni2(L2)2(MeOH)2(μ1,1‐N3)2][Ni2(L2)2(OH2)2(μ1,1‐N3)2]·MeOH ( 2 ), the dinuclear double end‐to‐end thiocyanate‐bridged [Cu2(L3)2(μ1,3‐NCS)2] ( 3 ), and the dinuclear double phenolate O‐bridged [Cu2(L4)2(NCS)2] ( 4 ), where HL1, HL2, HL3 and HL4 are four tridentate Schiff bases obtained by the condensation of 3,5‐dibromosalicylaldehyde with N‐ethylethane‐1,2‐diamine, of 3,5‐dichlorosalicylaldehyde with N‐methylpropane‐1,3‐diamine, of 3‐bromo‐5‐chlorosalicylaldehyde with 2‐aminomethylpyridine, and of 5‐nitrosalicylaldehyde with 2‐aminomethylpyridine, respectively. Each nickel(II) atom in 1 and 2 is in an octahedral coordination, while each copper(II) atom in 3 and 4 is in a square pyramidal coordination. There exists crystallographic inversion centre symmetry in each of the complexes.  相似文献   

17.
Four new dinuclear copper(II) complexes have been synthesized and have the general formula [Cu2(L)(H2O)2], where L = GLYDTO [N,N′‐bis(carboxymethyl)dithiooxamide], ALADTO [N,N′‐bis(carboxyethyl)dithiooxamide], VALDTO [N,N′‐bis(1‐carboxy‐2‐methylpropyl)dithiooxamide] and LEUDTO [N,N′‐bis(1‐carboxy‐3‐methylbutyl)dithiooxamide]. The complexes were characterized by elemental analysis as well as by IR, electronic and EPR spectroscopy. These techniques provided evidence for the presence of the CuNO2S chromophore. Magnetic susceptibility measurements on all the complexes in the range 4–300 K show the existence of a dominant antiferromagnetic interaction with ?J values greater than 300 cm?1. Thermal decomposition behaviour of the complexes was studied by thermogravimetry.  相似文献   

18.
In the presence of Et3N, the reaction of 1, 3‐bis[(2‐chloro)benzene]triazene (HL) with CuCl or AgNO3 gives the triazenide complexes {Cu2(L)2} ( 1 ) and {Ag2(L)2} ( 2 ), respectively. The X‐ray crystal structures of both complexes were obtained. The metal–metal distances (Cu ··· Cu and Ag ··· Ag) are 2.4974(5) and 2.7208(5) Å, respectively.  相似文献   

19.
The enantiopure ketoimine of benzil – the ( S )‐(‐)‐(1‐phenylethylimino)benzyl phenyl ketone ( 1 ) obtained under microwave irradiation in solvent‐free conditions – reacts with Na2[PdCl4] to give the new chiral mono‐ and dinuclear Pd‐complexes 2 and 3 , which have been partly characterized by IR, 1H and 13C NMR spectroscopies along with MS‐FAB+ spectrometry. The crystal and molecular structures of both complexes has been fully confirmed by single‐crystal X‐ray studies. On the other hand, investigations in vitro of 2 and 3 have displayed growth inhibition against different classes of cancer: leukemia (K‐562 CML), colon cancer (HCT‐15), cancer breast (MCF‐7), central nervous system (U‐251 Glio) and prostate cancer (PC‐3) cell lines.  相似文献   

20.
Reaction of CuI with 1 or 2 equivalent(s) N,N′‐Bis(diphenylphosphino)‐2,6‐diaminopyridine (BDDP) gives two different complexes, [Cu(I)μ‐(BDDP‐κP,Npy)]2 ( 1 ) and [Cu(BDDP‐κP,Npy)2]I ( 2 ), in high yields. The determination of the molecular structure show that both CuI atoms are tetrahedrally coordinated, rather than a square‐planar geometry reported for Cr0, NiII‐BDDP complexes before, which contains a planar tridentate chelate ring system. The introduction of AuCl(tht) (tht = tetrahydrothiophene) into [Cu(BDDP‐κP,Npy)2]I leads unexpectedly to the formation of a digold complex 2,6‐[(ClAuPh2P)HN]2C5H3N and dimeric [Cu(I)μ‐(BDDP‐κP,Npy)]2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号