首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV-1 is a hematogenously spread virus that most likely gains entry into the brain within blood-derived macrophages. Indeed, productive viral replication selectively occurs within perivascular and parenchymal blood-derived macrophages and microglia and HIV-infected macrophages have increased potential to bind and transmigrate through the blood-brain barrier. Once inside the brain, HIV-infected macrophages secrete a variety of pro-inflammatory mediators that display neuromodulatory and neurotoxic activities in several in vitro models for HIV-1 encephalitis. The final outcome regarding neuronal function and cell loss is regulated through intercellular interactions between these virus-infected cells and astrocytes. In this regard, both HIV-induced intracellular events in macrophages and interactions between HIV-infected macrophages and brain cells are reviewed as factors that might lead to neuronal injury in in vitro model systems for HIV-1 encephalitis.  相似文献   

2.
Apart from the unique changes characteristic of "HIV encephalitis", the productive infection of central nervous system by HIV, which involves predominantly the white matter and basal ganglia, evidence is accumulating that the cerebral cortex may also be affected in AIDS patients. Neuronal loss, suspected at microscopical examination, has been demonstrated by a number of morphometric studies. However, the cause and mechanism of neuronal damage in HIV infection, are still unclear. In an attempt to look for an apoptotic process at the origin of neuronal loss in AIDS, we examined samples of frontal cortex, temporal cortex and basal ganglia from 12 patients who died from AIDS and 4 HIV-positive asymptomatic cases using in situ end labelling to demonstrate characteristic DNA fragmentation. These were compared with 5 seronegative asymptomatic controls, and 2 seronegative patients with Alzheimer's disease. We demonstrated neuronal apoptosis in all the AIDS cases and in the Alzheimer's cases. Positive in situ end labelling was usually associated with morphological changes suggestive of neuronal apoptosis. Semiquantitative appreciation of the density of apoptotic neurons showed that neuronal apoptosis was more severe in atrophic brains. In contrast, no correlation was found between the density of apoptotic neurons and the presence of HIV encephalitis or a history of cognitive disorder. Only occasional apoptotic neurons were found in one asymptomatic, HIV-positive case. Apoptosis was never observed in asymptomatic seronegative cases. Experimental studies tend to support our in vivo findings. Infection by HIV of primary cultures of human embryonic central nervous system induced frequent apoptosis of neurons. No apoptotic cell was identified in non infected control cultures.  相似文献   

3.
The activation pattern of microglia in the cerebral cortex of AIDS patients with the neuropathological diagnosis of HIV-1 encephalitis was investigated by immunohistochemistry and morphometry. The number of activated microglial cells in the grey and white matter of five cortical regions was determined. In the grey and white matter of all cortical regions a significant increase in the number of microglial cells was demonstrated in HIV-1 infected brains. Moreover, the activation of microglia was not correlated with the presence of HIV-1 antigen in the brain region. The data show a significantly increased number of microglia in HIV-1 infected brains. These activated microglial cells could, among others, be those cells producing cytotoxic factors which, in turn, cause brain damage.  相似文献   

4.
BACKGROUND: HIV-1 invades the central nervous system early after infection when macrophage infiltration of the brain is low but myelin pallor is suggestive of blood-brain-barrier damage. High-level plasma viremia is a likely source of brain infection. To understand the invasion route, we investigated virus penetration across in vitro models with contrasting paracellular permeability subjected to TNF-alpha. MATERIALS AND METHODS: Blood-brain-barrier models constructed with human brain microvascular endothelial cells, fetal astrocytes, and collagen I or fibronectin matrix responded in a dose-related fashion to cytokines and ligands modulating paracellular permeability and cell migration. Virus penetration was measured by infectious and quantitative HIV-1 RNA assays. Barrier permeability was determined using inulin or dextran. RESULTS: Cell-free HIV-1 was retained by the blood-brain barrier with close to 100% efficiency. TNF-alpha increased virus penetration by a paracellular route in a dose-dependent manner proportionately to basal permeability. Brain endothelial cells were the main barrier to HIV-1. HIV-1 with monocytes attracted monocyte migration into the brain chamber. CONCLUSIONS: Early after the infection, the blood-brain barrier protects the brain from HIV-1. Immune mediators, such as TNF-alpha, open a paracellular route for the virus into the brain. The virus and viral proteins stimulate brain microglia and macrophages to attract monocytes into the brain. Infiltrating macrophages cause progression of HIV-1 encephalitis.  相似文献   

5.
Brain injury induces reactive gliosis, characterized by increased expression of glial fibrillary acidic protein (GFAP), astrocyte hypertrophy, and hyperplasia of astrocytes and microglia. One hypothesis tested in this study was whether ganglioside GD3+ glial precursor cells would contribute to macroglial proliferation following injury. Adult rats received a cortical stab wound. Proliferating cells were identified by immunostaining for proliferating cell nuclear antigen (PCNA) and by [3H]-thymidine autoradiography, and cell phenotypes by immunocytochemical staining for GD3, GFAP, ED1 (for reactive microglia) and for Bandeiraea Simplicifolia isolectin-B4 binding (all microglia). Animals were labeled with thymidine at 1,2,3, and 4 days postlesion (dpl) and sacrificed at various times thereafter. Proliferating cells of each phenotype were quantified. A dramatic upregulation of GD3 on ramified microglia was seen in the ipsilateral hemisphere by 2 dpl. Proliferating cells consisted of microglia and fewer astrocytes. Microglia proliferated maximally at 2-3 dpl and one third to one half were GD3+. Astrocytes proliferated maximally at 3-4 dpl, and some were also GD3+. Both ramified and ameboid forms of microglia proliferated and by 4 dpl all GD3+ microglia were ED1+ and vice versa. In the contralateral cortex microglia expressed neither GD3 nor ED1. Thus they acquired these antigens when activated. Neither microglia nor astrocytes that were thymidine-labeled at 2, 3, or 4 dpl changed in number in subsequent days. Most thymidine+ astrocytes were large GFAP+ reactive cells that clearly arose from pre-existing astrocytes, not from GD3+ glial precursors. In this model of injury microglia proliferate earlier and to a much greater extent than astrocytes, they can divide when in ramified form, and GD3 is up-regulated in most reactive microglia and in a subset of reactive astrocytes. We also conclude that microglial proliferation precedes proliferation of invading blood-borne macrophages.  相似文献   

6.
Chemokines and receptors in HIV encephalitis   总被引:1,自引:0,他引:1  
BACKGROUND: Chemokines are involved in the migration of leukocytes and have been implicated in several inflammatory diseases of the central nervous system. Some of their receptors have been proposed to mediate HIV infection. OBJECTIVE: To determine changes in chemokine and receptor expression in HIV encephalitis, and to determine whether upregulation leads to recruitment of infected monocytes across the blood-brain barrier and participates in HIV neuropathology. METHODS: Immunocytochemistry and double-label immunofluorescent laser confocal microscopy was performed with antibodies to chemokines and their receptors on brain tissues from patients who died with or without HIV encephalitis. In vivo distribution was compared with in vitro cultures of human neuroglial cells. RESULTS: The beta-chemokines monocyte chemotactic protein-1, macrophage inflammatory protein-1alpha, and RANTES were detected on brain macrophages. Their presence was associated with the histopathological signs of HIV encephalitis. The alpha-chemokines IP-10 (10 kDa inflammatory protein) and interleukin-8 were expressed by astrocytes in all tissues, including controls. Presence of the CXC-chemokine receptor (CXCR)-4 was seen on brain macrophages/microglia, neurons, and astrocytes. CC-Chemokine receptor (CCR)-5 was detected only on macrophages/microglia. CCR-3 and CCR-1 were expressed by macrophages and endothelial cells. In vitro studies examining the presence of CCR-3, CCR-5, and CXCR-4 on human brain cell cultures demonstrated abundant neuronal and microglial expression. CONCLUSIONS: Expression of a variety of chemokines and receptors was shown to be increased in HIV encephalitis brain tissues particularly in areas of neuroglial reaction. The expression pattern supported their involvement in the recruitment of inflammatory infiltrates and formation of microglial nodules. Presence of chemokine receptors on neurons may be involved in the pathogenesis of neurologic damage in AIDS patients.  相似文献   

7.
Morphological studies have shown that macrophages and microglia undergo apoptosis in the central nervous system (CNS) in acute experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. To assess the relative levels of macrophage and microglial apoptosis, and the molecular mechanisms involved in this process, we used three-colour flow cytometry to identify CD45lowCD11b/c+ microglial cells and CD45highCD11b/c+ macrophages in the inflammatory cells isolated from the spinal cords of Lewis rats 13 days after immunization with myelin basic protein (MBP) and complete Freund's adjuvant. Simultaneously, we analyzed the DNA content of these cell populations to assess the proportions of cells undergoing apoptosis and in different stages of the cell cycle or examined their expression of three apoptosis-regulating proteins, i.e. Fas (CD95), Fas ligand (FasL) and Bcl-2. Microglia were highly vulnerable to apoptosis and were over-represented in the apoptotic population. Macrophages were less susceptible to apoptosis than microglia and underwent mitosis more frequently than microglia. The different susceptibilities of microglia and macrophages to apoptosis did not appear to be due to variations in Fas, FasL or Bcl-2 expression, as the proportions of microglia and macrophages expressing these proteins were similar, and were relatively high. Furthermore, in contrast to T cell apoptosis, apoptosis of microglia/macrophages did not occur more frequently in cells expressing Fas or FasL, or less frequently in cells expressing Bcl-2. These results indicate that the apoptosis of microglia and CNS macrophages in EAE is not mediated through the Fas pathway, and that Bcl-2 expression does not protect them from apoptosis. Expression of FasL by macrophages and microglia may contribute to the pathogenesis and immunoregulation of EAE through interactions with Fas+ oligodendrocytes and Fas+ T cells. The high level of microglial apoptosis in EAE indicates that microglial apoptosis may be an important homeostatic mechanism for controlling the number of microglia in the CNS following microglial activation and proliferation.  相似文献   

8.
The immune response in the central nervous system (CNS) involves microglial cells which represent intraparenchymal antigen-presenting cells (APC). To control immune effector mechanisms it may be required to induce apoptosis of APC and thereby limit reactivation of T cells that have invaded the CNS. In the present study we investigated the susceptibility of primary murine microglia and of the murine microglial cell line BV-2 to undergo Fas-mediated apoptosis. Whereas resting microglia are resistant to Fas ligand (FasL) treatment, induction of FasL-mediated apoptosis was achieved by treatment with TNF-alpha or IFN-gamma. The effect of these cytokines was paralleled by up-regulation of Fas expression and down-regulation of Bcl-2 and Bcl-xL but not Bax. Activation of microglia by TNF-alpha and IFN-gamma was also accompanied by increased amounts of mRNA for the apoptosis inhibitor FLIP, an effect which did not protect the cells from FasL-induced apoptosis. The FasL-induced cell death pathway in microglia involves reactive oxygen intermediates because the antioxidants N-acetylcysteine and glutathione interfere with induction of apoptosis. Surprisingly, microglia constitutively express FasL on the cell surface. However, blocking of endogenous Fas-FasL interaction with Fas-Fc fusion protein did not enhance the survival of microglia, excluding the possibility of suicide or fratricide mechanisms. By their expression of FasL and their TNF-alpha/IFN-gamma-dependent sensitivity to the pro-apoptotic effect of exogenous FasL, microglial cells may influence the course of T cell-mediated diseases of the CNS.  相似文献   

9.
Infection by human immunodeficiency virus type 1 (HIV-1) is often complicated by a variety of neurological abnormalities. The most common clinical syndrome, termed acquired immunodeficiency syndrome (AIDS) dementia complex, presents as a subcortical dementia with cognitive, motor, and behavioral disturbances and is unique to HIV-1 infection. The pathogenesis of this syndrome is poorly understood but is believed to involve interactions among virally infected macrophages/microglia, astrocytes, and neurons. In this study, we show that exposure of primary rat and human astrocytes to heat-activated HIV-1 virions, or to eukaryotically expressed HIV-1 and HIV-2 envelope glycoproteins (gp120) stimulates amiloride-sensitive Na+/H+ antiport, potassium conductance, and glutamate efflux. These effects are blocked specifically by amiloride, an inhibitor of Na+/H+ antiport and by the selective removal of gp120 with immobilized monoclonal antibody. As a result of modulation of astrocytic function by gp120, the ensuing neuronal depolarization and glutamate exposure could activate both voltage-gated and N-methyl-D-aspartate-regulated Ca2+ channels, leading to increases in intraneuronal Ca2+ and neuronal death. These findings implicate the astrocyte directly in the pathogenesis of AIDS dementia complex.  相似文献   

10.
In the previous study, we have shown that propentofylline (PPF) could induce the cellular differentiation and apoptosis-related growth regression in the human glioma cell lines. Its biological functions were partly due to the increasing endogeneous NGF and its high affinity receptor, trk A productions. Although little has been known about the precise machinary regulating the propentofylline induced apoptosis. Recently, we have found that propentofylline could modulate some apoptosis related genes products in the glioma cell lines, i.e. NGF, trk A mRNA levels and Fas protein expressions were increased, whereas bcl-2 mRNA level was decreased. In the present study, we examined the apoptotic signal cascade, especially focusing on the expressing pattern of Bcl-2/Bax gene products. In the normal human astrocyte cells, Bax-beta was markedly expressed, whereas Bcl-2 and Bax-alpha proteins and mRNA were weakly or even nondetectable. Accordingly, Bax beta might be a dominant variant in the normal glial cells, which could have the appropriate balance of proapoptotic (Bax beta) and anti-apoptotic proteins (Bcl-2). In the glioma cells, we showed the over-expressions of Bcl-2 and Bax alpha compared with the normal counterparts. According to Bax dominant theory, Bax, not Bcl-2 may have a major role in regulating apoptosis by means of homodimerization. In might be implied that in the glioma cells, excessive expressions of Bcl-2 and Bax alpha would favor the formation of the Bax alpha/Bax beta heterodimer or the Bax beta/Bcl-2 heterodimer rather than the Bax beta/Bax beta homodimer, which might be presumed to be functional proteins. And finally the increasing relative ratio of Bax alpha/ Bax beta or Bax beta/Bcl-2 to Bax beta/Bax beta could allow the tumor cells to survive. Thus over-expression of the bcl-2 and bax alpha gene renders the glioma cells resistant to apoptosis. In the present study, PPF could promote Bax beta over-expression and Bcl-2 retardative expression in the glioma cells, whereas had no effect on Bax alpha expression. Therefore, PPF might promote apoptotic cell death through the mechanism that restore the glioma cells to the appropriate balance of proapoptotic and anti-apoptotic proteins like as normal astrocytes. Our results indicated that propentofylline might have a potential role as apoptotic modulators in the human glioma cell lines, not only its protective activities against neuronal ischemic damages.  相似文献   

11.
Recently, apoptosis has been implicated in the selective neuronal loss of Alzheimer's disease (AD). Apoptosis is regulated by the B cell leukemia-2 gene product (Bcl-2) family (Bcl-2, Bcl-x, Bax, Bak and Bad) and the caspase family (ICH-1 and CPP32), with apoptosis being prevented by Bcl-2 and Bcl-x, and promoted by Bax, Bak, Bad, ICH-1 and CPP32. In the present study, we examined the levels of these proteins in the membranous and cytosolic fractions of temporal cortex in AD and control brain. In the membranous fraction, the levels of Bcl-2 alpha, Bcl-xL, Bcl-x beta, Bak and Bad were increased in AD. In the cytosolic fractions, the level of Bcl-x beta was increased, while Bcl-xL, Bax, Bak, and Bad and ICH-1L were unchanged. CPP32 was not detected in AD or control brain. These findings demonstrate a differential involvement of cell death-regulatory proteins in AD and suggest that Bak, Bad, Bcl-2 and Bcl-x are upregulated in AD brains.  相似文献   

12.
Cultured rat prostatic adenocarcinoma (AT3) cells infected with the challenge virus standard (CVS) strain of fixed rabies virus showed characteristic morphologic features of apoptosis, evidence of oligonucleosomal DNA fragmentation, and expression of the Bax protein. CVS-infected Bcl-2-transfected AT3 cells did not demonstrate these features. Adult ICR mice inoculated intracerebrally with CVS showed morphologic changes of apoptosis, DNA fragmentation, and increased Bax expression in neurons, with changes most marked in the hippocampus and cerebral cortex. Ultrastructurally, some neurons demonstrated morphologic features more typical of necrosis. These studies provide evidence that apoptosis plays an important role in the pathogenesis of rabies virus infection.  相似文献   

13.
Beta-chemokines induce the directional migration of monocytes and T lymphocytes and are thus associated with chronic inflammation. Using immunocytochemistry and in situ hybridisation (ISH) techniques, we have examined the expression of the beta-chemokines monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES (regulated upon activation, normal T cell expressed and secreted) in post-mortem human brain from multiple sclerosis (MS) cases, at different stages of lesion development. In actively demyelinating MS plaques RANTES expression was restricted to the blood vessel endothelium, perivascular cells and surrounding astrocytes, suggesting a role in the recruitment of inflammatory cells from the circulation. MCP-1 was expressed by astrocytes and macrophages within acute MS lesions, but was restricted to reactive astrocytes in the parenchyma surrounding the lesion. MIP-1alpha was expressed by astrocytes and macrophages within the plaque, while MIP-1beta was expressed by macrophages and microglia within the lesion, and by microglia in surrounding white matter. Glial cells may be stimulated to produce chemokines and continue the local inflammatory response by forming chemotactic gradients to attract T cells and mononuclear phagocytes from the circulation and surrounding tissue.  相似文献   

14.
OBJECTIVE: To investigate whether the CC-chemokine monocyte chemotactic protein (MCP)-1 could play a role in the pathogenesis of HIV infection of the central nervous system. This hypothesis was suggested by previous observations, including our finding of elevated cerebrospinal fluid (CSF) levels of this chemokine in patients with cytomegalovirus (CMV) encephalitis. DESIGN AND METHODS: CSF levels of MCP-1 were determined in 37 HIV-infected patients with neurological symptoms, and were compared with both the presence and severity of HIV-1 encephalitis at post-mortem examination and CSF HIV RNA levels. MCP-1 production by monocyte-derived macrophages was tested after in vitro infection of these cells by HIV. RESULTS: CSF MCP-1 levels were significantly higher in patients with (median, 4.99 ng/ml) than in those without (median, 1.72 ng/ml) HIV encephalitis. Elevated CSF MCP-1 concentrations were also found in patients with CMV encephalitis and with concomitant HIV and CMV encephalitis (median, 3.14 and 4.23 ng/ml, respectively). HIV encephalitis was strongly associated with high CSF MCP-1 levels (P = 0.002), which were also correlated to high HIV-1 RNA levels in the CSF (P = 0.007), but not to plasma viraemia. In vitro, productive HIV-1 infection of monocyte-derived macrophages upregulated the secretion of MCP-1. CONCLUSIONS: Taken together, these in vivo and in vitro findings support a model whereby HIV encephalitis is sustained by virus replication in microglial cells, a process amplified by recruitment of mononuclear cells via HIV-induced MCP-1.  相似文献   

15.
Increasing evidence indicates a key role of chemoattractant cytokines in the accumulation of leukocytes in the central nervous system (CNS) during the course of inflammatory processes. Monocyte chemoattractant protein (MCP-1/JE), a member of the beta-chemokine (C-C chemokine) family, functions as a potent chemoattractant and activator for monocytes. We have investigated the induction of MCP-1 mRNA using in situ hybridization histochemistry (ISH) and characterized its cellular source by combination of ISH and immunocytochemistry in ischemic rat brains as well as in brains of endotoxin-treated rats. Our results show that 6 h-2 d after middle cerebral artery occlusion (MCAO), MCP-1 mRNA is present in astrocytes surrounding the ischemic tissue (penumbra). At later time points (after 4 d), MCP-1 mRNA is found in macrophages and reactive microglia in the infarcted tissue. Peripheral administration of the bacterial lipopolysaccharide (LPS) induced MCP-1 mRNA throughout the brain in a time-dependent manner (1 h-1 d, peak of expression 6-8 h) and was found in astrocytes. In summary, we have found expression of MCP-1 in (a) astrocytes and to a lesser extent in macrophages/reactive microglia after MCA-occlusion and in (b) astrocytes after peripheral administration of LPS. These findings support that MCP-1 is involved in the CNS response to acute trauma or infection and thus may play a key role in inflammatory processes of the brain.  相似文献   

16.
The Bcl-2 homologous region 3 (BH3) is sufficient for interaction of pro-apoptotic with anti-apoptotic Bcl-2 family members, and functional antagonism may determine whether cell survival or death is the outcome of this protein-protein interaction. To address the biological role of BH3, two Bax-Bcl2 chimeras were generated in which 13 amino acids encompassing BH3 was swapped between anti-apoptotic Bcl-2 and pro-apoptotic Bax, thereby generating Bax with BH3 of Bcl-2 (Bax-BH3Bcl2), and Bcl-2 with BH3 of Bax (Bcl2-BH3Bax). Function and binding of the chimeras was then assessed utilizing the adenoviral Bcl-2 homologue, E1B 19K, which blocks apoptosis, and interacts with Bax, but not with Bcl-2. E1B 19K did not interact with Bax-BH3Bcl2 but did interact with Bcl2-BH3Bax. Bax-BH3Bcl2 retained pro-apoptotic function, while Bcl2-BH3Bax did not exhibit either pro- or anti-apoptotic activity. Thus, BH3 of Bcl-2 encodes binding specificity but not the apoptotic propensity. E1B 19K could not block Bax-BH3Bcl2-induced apoptosis, suggesting that E1B 19K may act to antagonize pro-apoptotic proteins rather than as an effector of survival. Furthermore, Bax expression disrupted the mitochondrial membrane potential, which could be rescued by E1B 19K expression. Thus, BH3 controls the binding specificity among Bcl-2 family members, and direct interaction between pro-apoptotic and anti-apoptotic proteins is a mechanism to regulate mitochondrial membrane potential and apoptosis.  相似文献   

17.
The down-regulation of apoptosis may be an essential mechanism for tumour cell expansion in slowly proliferating tumours such as multiple myeloma. We studied eight myeloma cell lines for the presence of Bcl-2, which inhibits apoptosis, of Bax, which counteracts Bcl-2, of Bcl-x(L) and Bcl-x(S), which act in an anti- and pro-apoptotic fashion, respectively, and of Apo-1/Fas, which induces programmed cell death, when activated by the Apo-1/Fas ligand or the relevant monoclonal antibody (mab). All cell lines constitutively expressed homogenous amounts of Bcl-2, but displayed different amounts of Bax and Bcl-x proteins. The Apo-1/Fas antigen could be detected in seven out of eight myeloma lines, but expression levels varied considerably. The relative expression levels of Apo-1/Fas correlated with that of Bax, but not with that of Bcl-2 or Bcl-x subtypes. Furthermore, the effectiveness of the Apo-1/Fas mab was associated with the relative expression levels of the Apo-1/Fas and with that of the Bax antigen, but not with that of the Bcl-2 and Bcl-x antigens. We further showed that wild-type p53 function is not required for Apo-1/Fas-induced apoptosis, nor is it necessary for the expression of Bax or Apo-1/Fas antigens in myeloma. In conclusion, our results suggest a p53-independent co-regulation of Apo-1/Fas and Bax, as well as a role for Bax in Apo-1/Fas-induced apoptosis in myeloma.  相似文献   

18.
To clarify mechanisms of neuronal death in the postischemic brain, we examined whether astrocytes exposed to hypoxia/reoxygenation exert a neurotoxic effect, using a coculture system. Neurons cocultured with astrocytes subjected to hypoxia/reoxygenation underwent apoptotic cell death, the effect enhanced by a combination of interleukin-1beta with hypoxia. The synergistic neurotoxic activity of hypoxia and interleukin-1beta was dependent on de novo expression of inducible nitric oxide synthase (iNOS) and on nitric oxide (NO) production in astrocytes. Further analysis to determine the neurotoxic mechanism revealed decreased Bcl-2 and increased Bax expression together with caspase-3 activation in cortical neurons cocultured with NO-producing astrocytes. Inhibition of NO production in astrocytes by N(G)-monomethyl-L-arginine, an inhibitor of NOS, significantly inhibited neuronal death together with changes in Bcl-2 and Bax protein levels and in caspase-3-like activity. Moreover, treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by an NO donor, sodium nitroprusside. These data suggest that NO produced by astrocytes after hypoxic insult induces apoptotic death of neurons through mechanisms involving the caspase-3 activation after down-regulation of Bcl-2 and up-regulation of Bax protein levels.  相似文献   

19.
The oncogene product Bcl-2 protects cells from apoptosis whereas its homolog Bax functions to kill cells. Several binding partners of Bcl-2 and Bax have been isolated, but none of them has yet provided clues as to exactly how Bcl-2 and Bax work. According to one view, Bcl-2 and Bax interact with survival and death effector molecules, respectively, and neutralize each other through heterodimerization. Alternatively, Bcl-2 requires Bax for death protection, and additional proteins bind to the heterodimer to regulate its activity. Here we used a co-immunoprecipitation strategy to distinguish between these two possibilities. We show that the Bcl-2-Bax heterodimer is maintained, and no other protein associates stably in detectable amounts with Bcl-2, Bax, or the heterodimer in anti-Bcl-2 and anti-Bax immunoprecipitates from normal cells and cells exposed to apoptotic stimuli. Analysis of cells expressing various levels of Bcl-2 and Bax, however, revealed that the degree of protection against apoptosis does not correlate with the number of Bcl-2-Bax heterodimers but the amount of Bcl-2 that is free of Bax. In addition, the survival activity of Bcl-2 is unaffected when Bax expression is ablated by an antisense strategy. Our findings suggest that the Bcl-2-Bax heterodimer is a negative regulator of death protection, and that Bcl-2 requires neither Bax nor major, stable interactions with other cellular proteins to exert its survival function. We therefore propose that Bcl-2 acts as an enzyme (capturing substrates in a transient way), as a homodi- or multimer, or through the interaction with non-proteaceous targets (lipids, ions).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号