首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study on the saturated flow boiling heat transfer for a binary mixture of R290/R152a at various compositions is conducted at pressures ranging from 0.2 to 0.4 MPa. The heat transfer coefficients are experimentally measured over mass fluxes ranging from 74.1 to 146.5 kg/(m2·s) and heat fluxes ranging from 13.1 to 65.5 kW/m2. The influences of different parameters such as quality, saturation pressure, heat flux, and mass flux on the local heat transfer coefficient are discussed. Existing correlations are analyzed. The Gungor-Winterton correlation shows the best fit among experimental data for the two pure refrigerants. A modified correlation for the binary mixture is proposed based on the authors’ previous work on pool boiling heat transfer and the database obtained from this study. The result shows that the total mean deviation is 10.41% for R290/R152a mixtures, with 97.6% of the predictions falling within ±30%.  相似文献   

2.
Minsoo Kim 《传热工程》2019,40(12):973-984
ABSTRACT

The present study investigated the evaporation heat transfer coefficients of R-446A, as a low global warming potential alternative refrigerant to R-410A. The evaporation heat transfer coefficients were obtained by measuring the wall temperature of a straight stainless tube and refrigerant pressure. The heat transfer coefficients were measured for the quality range from 0.05 to 0.95, the mass flux from 100 to 400 kg/m2s, heat flux from 10 to 30 kW/m2, and saturation temperature from 5 to 10°C. The evaporation heat transfer coefficient of R-410A was verified by comparing the measured evaporation heat transfer coefficient with the value predicted by the existing correlation. The evaporation heat transfer coefficient of R-446A was measured using a proven experimental apparatus. When the heat flux was 10 kW/m2, the evaporation heat transfer coefficient of R-446A was always higher than that of R-410A. But, when the heat flux was 30 kW/m2, the evaporation heat transfer coefficient of R-446A was measured to be lower than that of R-410A near the dry-out point. The effect of the tube diameter on the R-446A evaporation heat transfer coefficient was negligible. The effect of saturation pressure on the evaporation heat transfer coefficient was prominent in the low quality region where the nucleate boiling was dominant.  相似文献   

3.
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m?2 s?1, heat flux from 0 to 55 kW m?2, exit saturation temperatures of 31 and 41°C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m?1 and from 1 to 7 kW m?2 K?1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.  相似文献   

4.
In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study was to experimentally establish how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux, and vapor quality. The copper microchannel heat sink contains 21 microchannels with 335 × 930 μm2 cross section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate was measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux varied within 200–600 kg/m2-s, and pressure varied within 6–16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It showed that nucleate boiling is the dominant mechanism for heat transfer. A new model of flow boiling heat transfer, considering nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper.  相似文献   

5.
An investigation on flow boiling heat transfer and pressure drop of HFC-134a inside a vertical helically coiled concentric tube-in-tube heat exchanger has been experimentally carried out. The test section is a six-turn helically coiled tube with 5.786-m length, in which refrigerant HFC-134a flowing inside the inner tube is heated by the water flowing in the annulus. The diameter and the pitch of the coil are 305 mm and 45 mm, respectively. The outer diameter of the inner tube and its thickness are respectively 9.52 and 0.62 mm. The inner diameter of the outer tube is 29 mm. The average vapor qualities in test section were varied from 0.1 to 0.8. The tests were conducted with three different mass velocities of 112, 132, and 152 kg/m2-s. Analysis of obtained data showed that increasing of both the vapor qualities and the mass fluxes leads to higher heat transfer coefficients and pressure drops. Also, it was observed that the heat transfer coefficient is enhanced and also the pressure drop is increased when a helically coiled tube is used instead of a straight tube. Based on the present experimental results, a correlation was developed to predict the flow boiling heat transfer coefficient in vertical helically coiled tubes.  相似文献   

6.
Heat transfer coefficients during condensation of the zeotropic refrigerant mixture R-22 with R-142b are presented. Measurements were obtained at different mass fractions in a smooth horizontal tube. All measurements were conducted at a high condensing saturation pressure of 2.43 MPa, which corresponds to a condensation temperature of 60 °C for R-22. The measurements were taken in 8.11 mm inner diameter smooth tubes with lengths of 1 603 mm. The heat transfer coefficients were determined with the Log Mean Temperature Difference equations. It was found that at low mass fluxes, between 40 kg·m−2·s−1 to 350 kg·m−2·s−1, the refrigerant mass fraction influences the heat transfer coefficient by up to a factor of two. The heat transfer coefficients decrease as the fraction of R-142b is increased. At high mass fluxes, of 350 kg·m−2·s−1 and more the heat transfer coefficients were not strongly influenced by the refrigerant mass fraction. The average heat transfer coefficient decreased by only 7% as the refrigerant mass fraction changed from 100% R-22 to 50%/50% R-22/R142b.  相似文献   

7.
Experiments were carried out on the flow pattern, heat transfer, and pressure drop of flow boiling of pure CO2 and CO2‐oil mixtures in horizontal smooth and micro‐fin tubes. The smooth tube is a stainless steel tube with an inner diameter of 3.76 mm. The micro‐fin tube is a copper tube with a mean inner diameter of 3.75 mm. The experiments were carried out at mass velocities from 100 to 500 kg/(m2·s), saturation temperature of 10 °C, and the circulation ratio of lubricating oil (PAG) was from 0 to 1.0 mass%. Flow pattern observations mainly showed slug and wavy flow for the smooth tube, but annular flow for the micro‐fin tube. Compared with the flow patterns in the case of pure CO2, an increase in frequency of slug occurrence in the slug flow region, and a decrease in the quantity of liquid at the top of the tube in the annular flow region were observed in the case of CO2‐oil mixtures. With pure CO2, the flow boiling heat transfer was dominated by nucleate boiling in the low vapor quality region, and the heat transfer coefficients for the micro‐fin tube were higher than those of the smooth tube. With CO2‐oil mixtures, the flow boiling heat transfer was dominated by convective evaporation, especially in the high vapor quality region. In addition, the heat transfer coefficient decreased significantly when the oil circulation ratio was larger than 0.1 mass%. For the pressure drop characteristics, in the case of pure CO2, the homogeneous flow model agreed with the experimental results within ±30% for the smooth tube. The pressure drops of the micro‐fin tube were 0–70% higher than those predicted with the homogeneous flow model, and the pressure drops increased for the high oil circulation ratio and high vapor quality conditions. The increases in the pressure drops were considered to be due to the increase in the thickness of the oil film and the decrease in the effective flow cross‐sectional area. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20287  相似文献   

8.
The pressure drop and boiling heat transfer characteristics of steam-water two-phase flow were studied in a small horizontal helically coiled tubing once-through steam generator. The generator was constructed of a 9-mm ID 1Cr18Ni9Ti stainless steel tube with 292-mm coil diameter and 30-mm pitch. Experiments were performed in a range of steam qualities up to 0.95, system pressure 0.5-3.5 MPa, mass flux 236-943 kg/m2s and heat flux 0-900 kW/m2. A new two-phase frictional pressure drop correlation was obtained from the experimental data using Chisholm’s B-coefficient method. The boiling heat transfer was found to be dependent on both of mass flux and heat flux. This implies that both the nucleation mechanism and the convection mechanism have the same importance to forced convective boiling heat transfer in a small horizontal helically coiled tube over the full range of steam qualities (pre-critical heat flux qualities of 0.1-0.9), which is different from the situations in larger helically coiled tube where the convection mechanism dominates at qualities typically >0.1. Traditional single parameter Lockhart-Martinelli type correlations failed to satisfactorily correlate present experimental data, and in this paper a new flow boiling heat transfer correlation was proposed to better correlate the experimental data.  相似文献   

9.
An experimental test rig for study of the pooling-boiling heat transfer performance of pure and mixed refrigerants was designed and established. The test section is a horizontal tube bundle evaporator with nine mechanically fabricated porous surface tubes in a triangular layout. With this test system, the heat transfer coefficients of the nucleate boiling in the evaporator were measured for R22, R407c, and R410a. Extensive experimental measures were made for those pure and mixed refrigerants at different heat fluxes from 10 kW m?2 to 43 kW m?2 at saturation temperature of 9°C. Comprehensive measured data are presented in this paper. From experimental results, it is found that the pool boiling heat transfer coefficient increases with increasing the heat flux. It is also found that boiling heat transfer coefficients for R410a are 1.25–1.81 times and 6.33–7.02 times higher than that for R22 and R407c, respectively. The experimental correlations for the pool boiling heat transfer coefficients of R22, R407c, and R410a on the present enhanced tubes bundle are developed. The thermal resistance analysis reveals that the thermal resistance of the water side is a controlling factor for the evaporator for R22 and R410a. However, for R407c, the thermal resistance of the refrigerant side is slightly higher than that of the water side. To further improve the overall heat transfer coefficient in the evaporator of R22 and R410a, the enhancement for both the inside and outside is equally important, and the effectively enhanced boiling surface must be developed for the evaporator of R407c.  相似文献   

10.
Two-phase frictional pressure drop characteristics of R410A/POE oil mixture flow boiling inside a straight micro-fin tube with the outside diameter of 7.0 mm were investigated experimentally. Experimental parameters include the evaporation temperature of 5 °C, the mass flux from 200 to 400 kg/(m2 s), the heat flux from 7.56 to 15.12 kW/m2, the inlet vapor quality from 0.2 to 0.7, and nominal oil concentration from 0% to 5%. The test results show that frictional pressure drop of R410A/POE oil mixture increases with the mass flux, the presence of oil enhances two-phase frictional pressure drop, and the effect of oil on frictional pressure drop is more evident at higher vapor qualities where the local oil concentrations are higher. New correlations to predict the local frictional pressure drop of R410A/POE oil mixture flow boiling inside the straight micro-fin tube are developed based on local properties of refrigerant–oil mixture, and the measured local frictional pressure drop is well correlated with the empirical correlations proposed by the authors.  相似文献   

11.
Sodium reacts chemically with water in the case of an unexpected tube failure of a steam generator (SG) in a fast breeder reactor (FBR). In order to predict the event with high accuracy, it is very important to understand the characteristics of heat transfer inside the tube in detail during the tube failure due to the sodium–water reaction. Experiments were performed by using purified water under the following conditions: initial pressure of 11.2–13.4 MPa, initial water temperature of 200 °C, and water mass flux of 45.7 to 3630 kg/(m2s). The test tube was heated rapidly by high‐frequency induction current. The time averaged heat flux was estimated by using an inverse solution from the measured temperatures at two points on three different locations along the tube. It was confirmed that the derived values agreed with the measured heat fluxes on the outer surface within 20% accuracy. It was found that the characteristics of the heat transfer strongly depend on the flow rate. The heat transfer on the wall changed from nucleate boiling to transient‐film boiling during increasing the heat flux and returned to the nucleate boiling during decreasing the heat flux. A counterclockwise cycle always appeared in the transition boiling region, where the nucleate and film boiling coexisted and the area ratio of these varied with time. The adequacy of heat transfer correlations to evaluate tube overheating was confirmed. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20320  相似文献   

12.
HFO1234yf has been proposed for mobile air-conditioners due to its low global warming potential (GWP) and performance comparable to that of R134a. However, its performance is inferior to that of R410A. This makes it difficult to be applied to residential air-conditioners. In order to apply the low-GWP refrigerant to residential air-conditioners, refrigerant mixtures of HFO1234yf and R32 are proposed, and their flow boiling heat transfer performances were investigated at two mass fractions (80/20 and 50/50 by mass%) in a smooth horizontal tube with an inner diameter of 2 mm. The experiments were conducted under heat fluxes ranging from 6 to 24 kW/m2 and mass fluxes ranging from 100 to 400 kg/m2 s at the evaporation temperature of 15 °C. The measured heat transfer coefficients were compared with those of pure HFO1234yf and R32. The results showed that the heat transfer coefficients of the mixture with an R32 mass fraction of 20% were 10–30% less than those of pure HFO1234yf for various mass and heat fluxes. When the mass fraction of R32 increased to 50%, the heat transfer coefficients of the mixture were 10–20% greater than those of pure HFO1234yf under conditions of large mass and heat fluxes. Moreover, the heat transfer coefficients of the mixtures were about 20–50% less than that of pure R32. The performances of the mixtures were examined at different boiling numbers. For refrigerant mixture HFO1234yf and R32 (80/20 by mass%), the nucleate boiling heat transfer was noticeably suppressed at low vapor quality for small boiling numbers, whereas the forced convective heat transfer was significantly suppressed at high vapor quality for large boiling numbers. This indicates that the heat transfer is greatly influenced by the mass diffusion resistance and temperature glide of the mixture.  相似文献   

13.
Heat transfer with liquid–vapor phase change in microchannels can support very high heat fluxes for use in applications such as the thermal management of high-performance electronics. However, the effects of channel cross-sectional dimensions on the two-phase heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to investigate the local flow boiling heat transfer of a dielectric fluid, Fluorinert FC-77, in microchannel heat sinks. Experiments are performed for mass fluxes ranging from 250 to 1600 kg/m2 s. Seven different test pieces made from silicon and consisting of parallel microchannels with nominal widths ranging from 100 to 5850 μm, all with a nominal depth of 400 μm, are considered. An array of temperature sensors on the substrate allows for resolution of local temperatures and heat transfer coefficients. The results of this study show that for microchannels of width 400 μm and greater, the heat transfer coefficients corresponding to a fixed wall heat flux as well as the boiling curves are independent of channel size. Also, heat transfer coefficients and boiling curves are independent of mass flux in the nucleate boiling region for a fixed channel size, but are affected by mass flux as convective boiling dominates. A strong dependence of pressure drop on both channel size and mass flux is observed. The experimental results are compared to predictions from a number of existing correlations for both pool boiling and flow boiling heat transfer.  相似文献   

14.
ABSTRACT

In this study, subcooled flow boiling was investigated in horizontal microtubes. Experiments were conducted using deionized water as the working fluid over a mass flux range of 4000–7000 kg m?2s?1 in microtubes with inner and outer diameters of ~600 and ~900 μm, respectively. Microtubes with lengths of 3, 6, and 12 cm were tested to clarify the effect of heated length on flow boiling heat transfer and pressure drop characteristics. A force analysis related to two-phase flow was conducted to understand the effect of forces on bubble dynamics. Pressure drop and heat transfer data in flow boiling were acquired. Experimental heat flux data were compared with partial boiling heat flux correlations, and good agreements were obtained. Pressure drop was larger in longer microtubes in comparison to shorter ones, while higher heat fluxes were obtained in shorter microtubes at the same wall superheat. Two-phase heat transfer coefficient increased with the microtube length due to lower temperature difference between wall temperature and bulk fluid temperature in longer microtubes. Higher heat fluxes achieved in shorter microtubes at the same wall superheat imply higher critical heat fluxes in shorter microtubes.  相似文献   

15.
ABSTRACT

This paper presents an experimental study on R1234yf flow boiling inside a mini microfin tube with an inner diameter at the fin tip of 2.4 mm. R1234yf is a new refrigerant with an extremely low global warming potential (GWP <1), proposed as a possible substitute for the common R134a, whose GWP is about 1300. The mass flux was varied between 375 and 940 kg m?2 s?1, heat flux from 10 to 50 kW m?2, and vapor quality from 0.1 to 1. The saturation temperature at the inlet of the test section was kept constant and equal to 30°C. The wide range of operative test conditions permitted highlighting the effects of mass flux, heat flux, and vapor quality on the thermal and hydraulic behavior during the flow boiling mechanism inside such a mini microfin tube. The results show that at low heat flux the phase-change process is mainly controlled by two-phase forced convection, and at high heat flux by nucleate boiling. The two-phase frictional pressure drop increases with increasing both mass velocity and vapor quality. Dry-out was observed only at the highest heat flux, at vapor qualities of around 0.94–0.95.  相似文献   

16.
This study investigates the heat transfer characteristics of a horizontal tube-in-tube heat exchanger with a helical wire inserted in the inner tube. The influence of the pitch (or helix angle) of the wire on the heat transfer performance and pressure drop during condensation (having all other geometric parameters the same) was investigated experimentally. Tests were conducted for condensing refrigerants R22, R134a, and R407C at an average saturation temperature of 40°C, with mass fluxes ranging from 300–800 kg/m2s and with vapor qualities ranging from 0.85–0.95 at condenser inlet to 0.05–0.15 at condenser outlet. Measurements were made for three helical wire-inserted tubes with different pitches of 5, 7.77, and 11 mm. The local and average heat transfer coefficients were compared not only with the measured data of a smooth tube, but also with the results of micro-fin tubes. The tube with a helical wire pitch of 5 mm inserts was found to have the highest enhancement factor, which can be elucidated by the extension of the annular flow regime. Heat transfer coefficient correlations for helical wire inserts were deduced, and they predicted the experimental data to within 20%.  相似文献   

17.
《传热工程》2012,33(9):828-834
Experiments were conducted for pool boiling on the outside of 8 × 3 (eight rows and three columns) plain and coated tube (surface roughness = 8.279 μm) bundles for three different pitch distances with the distinct objective to study the behavior and the enhancement of boiling heat transfer in horizontal staggered tube bundles (of plain and coated tubes for different equilateral triangular arrangements) with heat flux values ranging from ~12 to 45 kW/m2. At higher heat fluxes, coated and plain tube bundles had almost similar bundle average heat transfer coefficients at a given pitch distance, while at lower heat fluxes, the coated tube bundles have higher bundle average heat transfer coefficients as compared to that of the plain tube bundle. The coated tube bundles with the minimum pitch to diameter ratio of 1.4 exhibited the maximum bundle average heat transfer coefficients. The present study concludes that the bundle factor needs to be considered in the design of flooded evaporators.  相似文献   

18.
A new flow boiling heat transfer model and a new flow pattern map based on the flow boiling heat transfer mechanisms for horizontal tubes have been developed specifically for CO2. Firstly, a nucleate boiling heat transfer correlation incorporating the effects of reduced pressure and heat flux at low vapor qualities has been proposed for CO2. Secondly, a nucleate boiling heat transfer suppression factor correlation incorporating liquid film thickness and tube diameters has been proposed based on the flow boiling heat transfer mechanisms so as to capture the trends in the flow boiling heat transfer data. In addition, a dryout inception correlation has been developed. Accordingly, the heat transfer correlation in the dryout region has been modified. In the new flow pattern map, an intermittent flow to annular flow transition criterion and an annular flow to dryout region transition criterion have been proposed based on the changes in the flow boiling heat transfer trends. The flow boiling heat transfer model predicts 75.5% of all the CO2 database within ±30%. The flow boiling heat transfer model and the flow pattern map are applicable to a wide range of conditions: tube diameters (equivalent diameters for non-circular channels) from 0.8 to 10 mm, mass velocities from 170 to 570 kg/m2 s, heat fluxes from 5 to 32 kW/m2 and saturation temperatures from −28 to 25 °C (reduced pressures from 0.21 to 0.87).  相似文献   

19.
ABSTRACT

Evaporators of small and medium refrigeration systems, as in commercial and automobile air conditioning applications, are being studied to develop more compact and lighter equipment, that reaches good thermal performance and reliability, with low pressure drop. In this way, evaporators are being designed with small channels and materials like aluminum. Moreover, different refrigerants are being tested to substitute for hydrofluorocarbon (HFC) refrigerants, with different operational temperatures and pressures. Some of them, like hydrocarbons, although they present advantages with respect to their thermodynamic and transport properties, should be used with small charge in the system due to their flammability. This work presents the results of an experimental study to characterize the flow boiling of the refrigerant R600a (isobutane) in a multiport aluminum extruded tube with 7 parallel minichannels of 1.47 mm hydraulic diameter. The effects of mass velocity, heat flux, and vapor quality on heat transfer were investigated for constant saturation temperature and pressure. Heat fluxes in the range from 5 to 30 kW m?2, mass velocities set to discrete values in the range of 50 to 200 kg m?2 s?1, and saturation temperature of 20°C were considered. It was verified a significant effect of heat flux. Moreover, some images of flow patterns, in different conditions, are presented, and the main patterns identified were slug, intermittent, and annular.  相似文献   

20.
The subcooled flow boiling heat transfer characteristics of a kerosene kind hydrocarbon fuel were investigated in an electrically heated horizontal tube with an inner diameter of 1.0 mm, in the range of heat flux: 20–1500 kW/m2, fluid temperature: 25–400 °C, mass flux: 1260–2160 kg/m2 s, and pressure: 0.25–2.5 MPa. It was proposed that nucleate boiling heat transfer mechanism is dominant, as the heat transfer performance is dependent on heat flux imposed on the channel, rather than the fuel flow rate. It was found that the wall temperatures along the test section kept constant during the fully developed subcooled boiling (FDSB) of the non-azeotropic hydrocarbon fuel. After the onset of nucleate boiling, the temperature differences between inner wall and bulk fluid begin to decrease with the increase of heat flux. Experimental results show that the complicated boiling heat transfer behavior of hydrocarbon fuel is profoundly affected by the pressure and heat flux, especially by fuel subcooling. A correlation of heat transfer coefficients varying with heat fluxes and fuel subcooling was curve fitted. Excellent agreement is obtained between the predicted values and the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号