首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 69 毫秒
1.
针对高密度比多相流体模拟中存在的相间密度计算误差问题及产生的不合理对流运动模拟效果,提出一种基于体积通量无散度的隐式流体压强求解方法.首先,分析传统多相流模拟方法产生密度近似误差的原因;其次,提出“体积-压缩率”的关联计算方式,构建流体压缩率与压强间的线性关系;再次,分别设计恒定体积求解器和体积通量无散度求解器,以实现多相流模拟过程中流体体积的不可压缩性和速度场的无散度特性.为验证所提方法性能,以流体模拟方法 DFSPH为对比对象,分别以模拟效果合理性、数值计算稳定性与收敛性为定性和定量评估指标,依次开展两相溃坝、热对流等多相流交互实验.结果表明,该方法能够实现高效、稳定的多相流交互模拟视觉效果,在同等多相流条件下较DFSPH方法耗费更少计算时间实现收敛,在各种复杂模拟场景中均具有良好的健壮性、有效性和可扩展性,尤其适用于高密度比流体交互模拟.  相似文献   

2.
流体模拟是计算机图形学和虚拟现实技术的一个研究热点和难点,针对目前的流体模拟真实感不够强,不能描述流体表面破碎的缺陷,根据流体的物理模型,采用基于光滑粒子动力学(SPH)的方法实现了三维流体的模拟。算法的核心思想就是将流体视为一系列“粒子”的集合,粒子的物理量及其空间导数是通过搜索光滑半径内与其相互作用的粒子的物理量进行插值得到。此举可以简化拉氏流体力学偏微分方程组求解过程。与传统的流体模拟方法相比,采用SPH算法所得到的模拟结果不仅可以比较真实地模拟流体流动的效果,而且还能实现流体表面的剧烈变形,甚至表面破碎(如浪花飞溅效果)。试验结果表明采用的算法在流体自由表面描述的逼真度上具有十分明显的优势。  相似文献   

3.
使用光滑粒子流体动力学方法进行流体仿真,并提出一种边界校正方法。使用快速 泊松盘采样算法对容器边界进行采样,生成边界粒子,对边界粒子质量进行差值估算,计算边界 粒子对流体粒子的作用力,以此来仿真流体与边界的相互作用。该方法可避免穿刺、滞留等现象 的发生。通过实验验证了该算法的正确性。  相似文献   

4.
传统SPH流体模拟方法通常使用固定的粒子光滑长度进行插值计算,在某些情况下会导致较大的插值误差。为提升模拟精度,建立了粒子光滑长度与邻居粒子密度调和平均数间的关系,自适应调整粒子的光滑长度,并设计和定义了相应的邻居搜索方案和核函数以解决受力不对称的问题。经实验验证,粒子邻居数方差有效降低,解决了传统SPH支持域固定导致的粒子插值误差过大的问题,使仿真结果更接近物理事实。同时由于物理计算精度的提高,模拟稳定性得到增强,可使用更大的时间步长,有效提升了模拟速度。最终,相比其他方法在视觉质量和模拟速度上均具有一定优势。  相似文献   

5.
光滑粒子流体动力学(SPH)法是一种无网格的流体模拟方法,固液边界处理是SPH法模拟流体行为的重点和难点。本文提出一种单层加密粒子法进行固液边界处理。与虚拟粒子法将边界假设为静止的流体粒子不同,本文将边界假设为具有一定密度的固体粒子,依靠物理约束进行流体计算。这种方法能够有效降低模拟中穿越边界的粒子数量,使得流体边界处的模拟更加符合真实情况。本文采用仿真流体数据对提出的算法进行验证,并对其有效性进行分析讨论。  相似文献   

6.
聂霄  陈雷霆 《计算机应用》2015,35(1):206-210
针对流体与固体边界的交互模拟问题,提出一种基于弱可压缩光滑粒子流体动力学(SPH)的边界处理算法.首先,引入一种新的体积权重函数,解决固体边界非均匀采样区域流体密度的计算误差问题;然后,提出一种新的边界力计算模型,避免校正流体粒子位置信息,保证固体边界不可穿透;最后,提出一种改进的流体压力计算模型,保证流体的弱可压缩性.实验结果表明,所提算法可以有效地解决基于位置校正的边界处理方法在模拟弱可压缩流体与非均匀采样固体边界交互时存在的稳定性问题,且仅需边界粒子的位置信息,在节约内存的同时避免了位置校正所带来的额外计算开销.  相似文献   

7.
目的 针对固流交互中的固体破碎现象模拟研究较少、物理模型复杂、多求解器耦合性差、真实感与实时性难以兼顾等问题,提出一种适用于光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)固流交互统一粒子框架的实时固体破碎模拟方法。方法 首先,结合断裂力学理论与统一粒子框架下固体边界粒子的空间和物理特性,构建基于物理的能量分析模型。然后,通过实时分析固体与流体之间的能量转化和自身能量平衡,将满足条件的粒子作为破碎发生的启发点。最后,采用基于几何的碎块生成方法,将启发点集作为种子点构建Voronoi图,完成碎块的生成。为确保模拟系统实时性,将模拟系统进行并行优化并加载至图形处理器(graphics processing unit,GPU)并行执行。结果 通过在不同复杂度和粒子规模的实验场景中进行模拟得到的结果表明,本文方法能够稳定地模拟固体受到流体冲击后发生的破碎现象,破碎细节真实感良好,在百万级粒子规模下能够满足实时性要求,可大规模并行执行且GPU加速效果显著,加速收益随场景规模增大而增大。结论 与现有研究相比,本文方法充分结合物理与几何方法的优点,与SPH统一粒子框架具有更高的耦合性,能够稳定地模拟固流交互中的固体破碎现象,细节符合现实世界物理规律,真实感渲染效果良好,可应用于洪涝、海啸、溃坝和泥石流等自然灾害的交互式预演、电子游戏特效等领域。  相似文献   

8.
目的:流体模拟方法中的基于旋度的模拟方法相比于基于速度的模拟方法,能提供较多细节,但是通常难以处理不同的边界条件,比如固体边界和自由表面,而且通常难以保证模拟的稳定性。本文的目的就是为了解决基于旋度的模拟方法的边界问题和稳定性问题。方法:本文提出了一种新的网格结构,在这种网格结构下,旋度分量被错开放置在每个网格的棱的中心点。利用这种网格离散格式,本文提出了几种修改求解速度场方程组的策略,以应对不同的边界条件。结果:本文给出了多种场景下的流体模拟结果图,以及几种场景下的总动能变化图和时间效率表。结果显示,本文方法能够处理好不同边界条件,并保持模拟的稳定性。结论:本文提出了一种新的涡粒子流体模拟方法,该方法利用一种新的网格结构辅助模拟,在这种新的网格离散格式下,该方法解决了基于旋度的模拟方法的边界问题和稳定性问题。  相似文献   

9.
10.
为减少室内火灾环境下人员伤亡,研究了人员疏散计算机模拟问题.将人员运动视为一种流体运动,利用流体力学原理,构建一种新的人员疏散混合模型,并在其中引入了一种从众模式.同时,采用光滑粒子流体动力学方法对模型离散化,从而减少了计算量.不同工况下进行的疏散模拟实验表明,所提出的模型及算法能够较准确地模拟出实际疏散的现象.  相似文献   

11.
Smoothed particle hydrodynamics (SPH)‐based fluid control is often involved in fluid animation. Because most of the existing SPH fluid control methods employ the strategy of control force to control fluid particles, the artificial viscosity introduced by control force would lead to the loss of fine‐scale details. Although the introduction of the low‐pass filter can add details, it may easily destroy the target shape. To remedy the previous problems, we sample the control particles with curvature information to represent the shape complexity. Because of the shape's complexity, we suppress the generation of turbulence in the high‐curvature areas and promote turbulence in the low‐curvature regions. Our self‐adaptive way to randomly generate turbulence can effectively prevent the lack of fluid dynamics caused by the artificial viscosity. Our new method can improve the visual quality of the fluid animation, and the shape control result is consistent to the target shape. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
We propose a novel monolithic pure SPH formulation to simulate fluids strongly coupled with rigid bodies. This includes fluid incompressibility, fluid–rigid interface handling and rigid–rigid contact handling with a viable implicit particle-based dry friction formulation. The resulting global system is solved using a new accelerated solver implementation that outperforms existing fluid and coupled rigid–fluid simulation approaches. We compare results of our simulation method to analytical solutions, show performance evaluations of our solver and present a variety of new and challenging simulation scenarios.  相似文献   

13.
GPU中的流体场景实时模拟算法   总被引:2,自引:0,他引:2  
为了实时模拟真实的大规模流体场景,提出一种基于平滑粒子流体力学(SPH)进行流体场景模拟的算法.首先提出了新的精细程度函数作为非均匀采样的依据,以减少实际模拟时所需的粒子数,提高模拟的速度;然后引入一种三维空间网格划分算法和改进的并行基数排序算法,以加快模拟过程中对邻域粒子和边界的查找及其相互作用的计算;最后使用最新的NVIDIA(CUDA(架构,将SPH的全部模拟计算分配到GPU流处理器中,充分利用GPU的高并行性和可编程性,使得对SPH方法的流体计算和模拟达到实时.实验结果表明,采用文中算法能对流体场景的计算模拟达到实时,并实现比较真实的模拟效果.与已有的SPH流体CPU模拟方法相比,其加速比达到2个数量级以上,同时相比已有GPUSPH方法,能模拟出更为丰富的细节效果.  相似文献   

14.
This paper presents a novel realistic and stable turbulence synthesis method to simulate the turbulent details generated behind objects in smoothed particle hydrodynamics (SPH) fluids. Firstly, by approximating the boundary layer theory on the fly in SPH fluids, we propose a vorticity production model to identify which fluid particles shed from object surfaces and which are seeded as vortex particles. Then, we employ an SPH‐like summation interpolant formulation of the Biot–Savart law to calculate the fluctuating velocities stemming from the generated vorticity field. Finally, the stable evolution of the vorticity field is achieved by combining an implicit vorticity diffusion technique and an artificial dissipation term. Moreover, in order to efficiently catch turbulent details for rendering, we propose an octree‐based adaptive surface reconstruction method for particle‐based fluids. The experiment results demonstrate that our turbulence synthesis method provides an effect way to model the obstacle‐induced turbulent details in SPH fluids and can be easily added to existing particle‐based fluid–solid coupling pipelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A major issue in smoothed particle hydrodynamics (SPH) approaches is the numerical dissipation during the projection process, especially under coarse discretizations. High‐frequency details, such as turbulence and vortices, are smoothed out, leading to unrealistic results. To address this issue, we introduce a vorticity refinement (VR) solver for SPH fluids with negligible computational overhead. In this method, the numerical dissipation of the vorticity field is recovered by the difference between the theoretical and the actual vorticity, so as to enhance turbulence details. Instead of solving the Biot‐Savart integrals, a stream function, which is easier and more efficient to solve, is used to relate the vorticity field to the velocity field. We obtain turbulence effects of different intensity levels by changing an adjustable parameter. Since the vorticity field is enhanced according to the curl field, our method can not only amplify existing vortices, but also capture additional turbulence. Our VR solver is straightforward to implement and can be easily integrated into existing SPH methods.  相似文献   

16.
In virtual environments, real‐time simulation and rendering of dynamic fluids have always been the pursuit for virtual reality research. In this paper, we present a real‐time framework for realistic fluid simulation and rendering on graphics processing unit. Because of the high demand for interactive fluids with larger particle set, the computational need is becoming higher. The proposed framework can effectively reduce the computational burden through avoiding the computation in inactive areas, where many particles with similar properties and low local pressure cluster together. While in active areas, the computation is fully carried out; thus, the fluid dynamics are largely preserved. Here, a robust particle classification technique is introduced to classify particles into either active or inactive. The test results have shown that the technique improves the time performance of fluid simulation largely. We then incorporate parallel surface reconstruction technique using marching cubes to extract the surfaces of the fluid. The introduced histogram pyramid‐based marching cubes technique is fast and memory efficiency. As a result, we are able to produce plausible and interactive fluids with the proposed framework for large‐scale virtual environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
目的 基于物理的流体动画模拟是计算机图形学领域中的研究热点,针对实际应用中仍难以实现大规模流体场景的真实感与实时模拟,提出了基于shallow water方程的物理模拟方法。方法 首先,给出shallow water方程的稳定欧拉数值求解方法,解决模拟过程中存在的毛刺、陡坡水滴斑点等数值求解的不稳定性问题;其次,提出刚体和粒子系统与流体高度场的稳定耦合模型,实现双向固流耦合和流体表面细节的真实感模拟;最后,设计高度场的多精度网格算法以及粒子的隔点采样方法,加速大规模流体的物理模拟计算。结果 实验结果表明,本文方法解决了传统欧拉方法求解shallow water方程的流体模拟过程中存在的不稳定和计算复杂等问题,在300×300网格分辨率和2.2×104粒子数的规模下,达到了20帧/s的实时模拟速度。结论 本文算法具有良好的高效性和稳定性,适用于电子游戏和视景仿真等实时应用领域中的大规模流体场景的真实感模拟。  相似文献   

18.
Droplet impacting liquid surface is not only the extremely prevalent phenomenon in the nature and industrial production but also the extremely complicated problem of strong non-linear transient impact and free-surface flow. On the basis of the two-dimensional viscous incompressible N-S equations, this paper conducts a study of numerical simulation on the problem of droplet impacting liquid surface (water beads) of water container in certain initial velocity by the method of SPH (smoothed particle hydrodynam...  相似文献   

19.
We propose a new method based on the use of fractional differentiation for improving the efficiency and realism of simulations based on smoothed particle hydrodynamics (SPH). SPH represents a popular particle‐based approach for fluid simulation and a high number of particles is typically needed for achieving high quality results. However, as the number of simulated particles increase, the speed of computation degrades accordingly. The proposed method employs fractional differentiation to improve the results obtained with SPH in a given resolution. The approach is based on the observation that effects requiring a high number of particles are most often produced from colliding flows, and therefore, when the modeling of this behavior is improved, higher quality results can be achieved without changing the number of particles being simulated. Our method can be employed to reduce the resolution without significant loss of quality, or to improve the quality of the simulation in the current chosen resolution. The advantages of our method are demonstrated with several quantitative evaluations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号