首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The dechlorination of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) via reaction with metallic iron under low-oxygen conditions was studied using reaction mixture pH values of 2.0, 3.0, and 3.8. The pH control was achieved through addition of sulfuric acid throughout the duration of the reaction. The lower the pH of the reaction mixture, the faster the degradation of atrazine. The surface area of the sulfuric acid-treated iron particles was 0.31 (+/- 0.01) m2 g-1 and the surface area normalized initial pseudo-first order rate constants (kSA, where rate = kSA x (surface area/l) x [Atrazine]) at pH values of 2.0, 3.0, and 3.8 were equal to, respectively, 3.0 (+/- 0.4) x 10(-3) min-1 m-2 l, 5 (+/- 3) x 10(-4) min-1 m-2 l, and 1 (+/- 1) x 10(-4) min-1 m-2 l. The observed products of the degradation reaction were dechlorinated atrazine (2-ethylamino-4-isopropylamino-1,3,5-triazine) and possibly hydroxyatrazine (2-ethylamino-4-isopropylamino-6-hydroxy-s-triazine). Triazine ring protonation may account, at least in part, for the observed effect of pH on atrazine dechlorination via metallic iron.  相似文献   

2.
Gallard H  De Laat J 《Chemosphere》2001,42(4):405-413
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III).  相似文献   

3.
Toxicity, uptake, and transformation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] by three species of poplar tree were assessed. Poplar cuttings were grown in sealed flasks with hydrophonic solutions and exposed to various concentrations of atrazine for a period of two weeks. Toxicity effects were evaluated by monitoring transpiration and measuring poplar cutting mass. Exposure to higher atrazine concentrations resulted in decrease of biomass and transpiration accompanied by leaf chlorosis and abscission. However, poplar cuttings exposed to lower concentrations of atrazine grew well and transpired at a constant rate during experiment periods. Poplar cuttings could take up, hydrolyze, and dealkylate atrazine to less toxic metabolites. Metabolism of atrazine occurred in roots, stems, and leaves and became more complete with increased residence time in tissue. These results suggest that phytoremediation is a viable approach to removing atrazine from contaminated water and should be considered for other contaminants.  相似文献   

4.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

5.
To help elucidate the mechanism of dechlorination of chlorinated triazines via metallic iron, terbutylazine (TBA: 2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (DIA: 2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (CDMT: 2-chloro-4,6-dimethoxy-1,3,5-triazine) were degraded via zero valent iron under controlled pH conditions. The lower the solution pH the faster the degradation, with surface area normalized pseudo first order rate constants ranging from 2 (+/- 1)x10(-3) min(-1) m(-2) l for TBA at pH 2.0 to 4 (+/- 2)x10(-5) min(-1) m(-2) l for CDMT at pH 4.0. Hydrogenolysis (dechlorinated) products were observed for TBA and CDMT. Electrochemical reduction on mercury showed similar behavior for all of the triazines studied; the initial product of CDMT bulk electrolysis was the dechlorinated compound. The iron results are consistent with a mechanism involving the addition of surface hydrogen to the surface associated triazine.  相似文献   

6.

Toxicity, uptake, and transformation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] by three species of poplar tree were assessed. Poplar cuttings were grown in sealed flasks with hydrophonic solutions and exposed to various concentrations of atrazine for a period of two weeks. Toxicity effects were evaluated by monitoring transpiration and measuring poplar cutting mass. Exposure to higher atrazine concentrations resulted in decrease of biomass and transpiration accompanied by leaf chlorosis and abscission. However, poplar cuttings exposed to lower concentrations of atrazine grew well and transpired at a constant rate during experiment periods. Poplar cuttings could take up, hydrolyze, and dealkylate atrazine to less toxic metabolites. Metabolism of atrazine occurred in roots, stems, and leaves and became more complete with increased residence time in tissue. These results suggest that phytoremediation is a viable approach to removing atrazine from contaminated water and should be considered for other contaminants.  相似文献   

7.
Bench-scale sand column breakthrough experiments were conducted to examine atrazine removal in agricultural infiltrate by Agrobacterium radiobacter J14a (J14a) immobilized in phosphorylated-polyvinyl alcohol compared to free J14a cells. The effects of cell loading and infiltration rate on atrazine degradation and the loss of J14a were investigated. Four sets of experiments, (i) tracers, (ii) immobilized dead cells, (iii) immobilized cells, and (iv) free cells, were performed. The atrazine biodegradation at the cell loadings of 300, 600, and 900 mg dry cells L(-1) and the infiltration rates of 1, 3, and 6 cm d(-1) were tested for 5 column pore volumes (PV). The atrazine breakthrough results indicated that the immobilized dead cells significantly retarded atrazine transport. The atrazine removal efficiencies at the infiltration rates of 1, 3, and 6 cm d(-1) were 100%, 80-97%, and 50-70%, respectively. Atrazine degradation capacity for the immobilized cells was not significantly different from the free cells. Both infiltration rate and cell loading significantly affected atrazine removal for both cell systems. The bacterial loss from the immobilized cell system was 10-100 times less than that from the free cell system. For long-term tests at 50 PV, the immobilized cell system provided consistent atrazine removal efficiency while the atrazine removal by the free cells declined gradually because of the cell loss.  相似文献   

8.
In this study, the effects of size of adsorbent, temperature, pH of solution, ionic strength, presence of inorganic substances such as calcium ion, magnesium ions, chloride ions, fertilizers and presence of organic substances such as dissolved organic matter, surfactant, other herbicides on sorption of 2,4-D and atrazine onto rubber granules were investigated. The removal efficiency was more for fine adsorbent particles. Temperature played an important role in sorption process. Temperature effect was endothermic for 2,4-D and exothermic for atrazine, respectively. The removals were maximum at pH 4 for 2,4-D and at pH 6 for atrazine. The presence of other herbicide (butachlor) reduced sorption capacity of rubber granules by approximately 10% for both 2,4-D and atrazine. All other factors had insignificant effect on sorption capacity. The mathematical expressions were developed for predicting the overall percentage removal of 2,4-D and atrazine on the basis of major four controlling factors viz. adsorbent size, temperature, pH and presence of other herbicide.  相似文献   

9.
Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.  相似文献   

10.
This research investigated the role of the pH buffer capacity of sediment on the dechlorination of atrazine using zero valent iron (ZVI). The buffer capacity of the sediment was quantified by batch experiments and estimated to be 5.0 cmol OH(-) . pH(-1). The sediments were spiked with atrazine at 7.25-36.23 mg kg(-1) (6.21 x 10(-7)-3.09 x 10(-6) mol atrazine . g(-1) sediment) for the batch experiments. The buffer capacity of the sediment maintained the sediment suspension at neutral pH, thereby enabling continuous dechlorination until the buffer capacity of the sediment was depleted. The pseudo-first order dechlorination constants were estimated to be in the range of 1.19 x 10(-2)-7.04 x 10(-2) d(-1) for the atrazine-spiked sediments.  相似文献   

11.
Sodium azide (NaN(3)) is one of the biocides commonly used to inhibit microbial growth during sorption experiments. However, a few reports have suggested that NaN(3) can react with the analyte of interest. In this study, the interactions of NaN(3) with triazine herbicides were investigated and the effect of atrazine transformation on its sorption to soil was evaluated. The concentration of atrazine in the presence of NaN(3) decreased significantly over period of time. After 14 days, only 38% of the initial atrazine concentration (10 mg l(-1)) was detected in a solution containing 1,000 mg l(-1) NaN(3) at pH 5.5. The magnitude and the rate of atrazine transformation increased with increase in NaN(3) load and with decrease in pH. In contrast to atrazine behavior, the concentrations of prometon and ametryn did not change during the experiment. GC/MS analysis indicated that the chlorine atom of atrazine is replaced by the azide group yielding 2-azido-4-(ethylamino)-6-(isopropylamino)-s-triazine. Atrazine transformation by NaN(3) significantly affected sorption of herbicide to soil. The presence of NaN(3) affects indirectly the sorption of atrazine due to competitive effect of its derivative. Our results demonstrated that the application of NaN(3) as a biocide in sorption-desorption experiments must be carefully evaluated. This issue is vital for sorption experiments conducted over long periods of time or/and with concentration of NaN(3) higher than 100 mg l(-1).  相似文献   

12.
A study was conducted from summer 1995 to summer 1997 to assess the seasonal occurrence of pesticide residues and other organic contaminants, polychlorinated biphenyls (PCBs), in water at the estuaries of Rosetta and Damiatta branches of the Nile river. The results indicated that organochlorine compounds (OCs) including HCB, lindane, p,p'-DDE, p,p'DDD, p,p'-DDT, aroclor 1254 and aroclor 1260 were present in all the water samples at concentration levels ranging between 0.195-0.240, 0.286-0.352, 0.035-0.067, 0.019-0.033, 0.024-0.031, 0.390-0.70 and 0.166-0.330 microgram/l, respectively. The levels of these compounds were higher in water of Damiatta branch than those found in water of Rosetta branch. Aldrin, dieldrin and endrin were not detected in all water samples. Only 4 compounds from 36 organophosphorus insecticides, fungicides and s-triazine herbicides tested were detected in water samples collected during summer and autumn seasons from Rosetta branch. The concentration levels of these detected compounds, dimethoate, malathion, captan, and ametryne, ranged from 0.011 to 0.340 microgram/l, respectively. Similar compounds during the same seasons as found in water of Rosetta branch were also detected in water of Damiatta branch except ametryne. The levels of the detected compounds (dimethoate, malathion and captan) ranged between 0.030 and 0.330 microgram/l. The levels of detected organophosphorus insecticides, fungicides and s-triazine herbicides were in the order: dimethoate > malathion > captan > ametryne.  相似文献   

13.
Relative importance of hydrolysis and photolysis of atrazine and its degradation products in aqueous solutions with dissolved humic acids (HA) has been assessed under exposure to sunlight and under UV irradiation. Quantum yield for direct photolysis of atrazine at 254 nm was 0.037 mol photon(-1), the reaction order was 0.8. Atrazine, desethylatrazine and desisopropylatrazine converted to their 2-hydroxy analogs with rate constants 0.02-0.08 min(-1) in clear solutions, while addition of HA (300 mg L(-1)) caused a 10-fold increase in rate constants. Hydroxyatrazine was not degraded. No evidence of photo-Fenton reaction was found. Under exposure to solar light, atrazine, desethylatrazine and desisopropylatrazine were converted to 2-hydroxy analogs only at pH 2 because of acid hydrolysis and possible contribution of photolysis. At lower HA concentration, only their light-shielding effect was noticed, while at higher concentrations, HA-catalysed hydrolysis prevailed. Hydroxyatrazine concentration diminished at all pH values in solutions without HA exposed to sunlight.  相似文献   

14.
The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha(-1) and 1.3 kg ha(-1), respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha(-1)). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 microg L(-1). Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 microg L(-1) . Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.  相似文献   

15.
Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs approximately 3.0 and approximately 7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH approximately 7.0 than at pH approximately 3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH approximately 7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH approximately 3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH approximately 3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars.  相似文献   

16.
Influence of soil texture and tillage on herbicide transport   总被引:2,自引:0,他引:2  
Two long-term no-till corn production studies, representing different soil texture, consistently showed higher leaching of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] to groundwater in a silt loam soil than in a sandy loam soil. A laboratory leaching study was initiated using intact soil cores from the two sites to determine whether the soil texture could account for the observed differences. Six intact soil cores (16 cm dia by 20 cm high) were collected from a four-year old no-till corn plots at each of the two locations (ca. 25 km apart). All cores were mounted in funnels and the saturated hydraulic conductivity (Ksat) was measured. Three cores (from each soil texture) with the lowest Ksat were mixed and repacked. All cores were surface treated with 1.7 kg ai ha(-1) [ring-14C] atrazine, subjected to simulated rainfall at a constant 12 mm h(-1) intensity until nearly 3 pore volume of leachate was collected and analyzed for a total of 14C. On an average, nearly 40% more of atrazine was leached through the intact silt loam than the sandy loam soil cores. For both the intact and repacked cores, the initial atrazine leaching rates were higher in the silt loam than the sandy loam soils, indicating that macropore flow was a more prominent mechanism for atrazine leaching in the silt loam soil. A predominance of macropore flow in the silt loam soil, possibly due to greater aggregate stability, may account for the observed leaching patterns for both field and laboratory studies.  相似文献   

17.
羟基氧化铁催化臭氧氧化去除水中阿特拉津   总被引:2,自引:0,他引:2  
以实验室制备的羟基氧化铁(FeOOH)为催化剂,研究了其催化臭氧氧化去除水中痕量阿特拉津的效能,并对影响催化效果因素及降解机理进行了探讨。在本实验条件下,反应8 min时催化氧化阿特拉津的去除率比单独臭氧氧化高出63.2%,而FeOOH对阿特拉津的吸附量很小,结果表明,FeOOH对臭氧氧化水中的痕量阿特拉津具有明显的催化活性。探讨了催化剂投量、pH、阿特拉津初始浓度和重碳酸盐碱度对催化氧化阿特拉津的影响。催化剂最佳投量为150 mg/L,去除率随pH和阿特拉津初始浓度的增加而升高,重碳酸盐浓度为200 mg/L时催化作用受到明显抑制。通过研究叔丁醇对催化反应的影响间接推断了催化反应的机理,叔丁醇作为羟基自由基抑制剂有效地抑制了水中羟基自由基的生成和它对阿特拉津的氧化反应,间接证明这种催化作用遵循羟基自由基的反应机理。  相似文献   

18.
The behavior and fate of triasulfuron (TRS) in water and soil systems were examined in laboratory studies. The degradation of TRS in both buffer solution and soil was highly pH-sensitive. The rate of degradation could be described with a pseudo first-order kinetic and was much faster at pH 4 than at pH 7 and 9. Aqueous hydrolysis occurred by cleavage of the sulfonylurea bridge to form 2-(2-chloroethoxy) benzenesulfonamide (CBSA) and [(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] (AMMT). AMMT was unstable in aqueous solutions in any pH condition but it degraded more quickly at pH 4 and 9. CBSA did not degrade in aqueous solutions or in enriched cultures but it underwent a quick degradation in the soil. The rates of TRS degradation in sterile and non-sterile soils were similar, suggesting that microorganisms played a minimal role in the breakdown process. This hypothesis is supported by the results of studies on the degradation of TRS by enriched cultures during which the molecule underwent a prevalently chemical degradation.  相似文献   

19.
Experimental in situ chemical peroxidation of atrazine in contaminated soil   总被引:4,自引:0,他引:4  
Mecozzi R  Di Palma L  Merli C 《Chemosphere》2006,62(9):1481-1489
Lab-scale experiments of in situ chemical oxidation (ISCO), were performed on soil contaminated with 100 mg kg(-1) of atrazine (CIET). The oxidant used was hydrogen peroxide catalysed by naturally occurring minerals or by soluble Fe(II) sulphate, added in aqueous solution. The oxidation conditions were: CIET:H2O2=1:1100, 2 PV or 3 PV reaction volume, Fe(II):H2O2=0, 1:22, 1:11. Stabilized (with KH2PO4 at a concentration of 16 g l(-1)) or non-stabilized hydrogen peroxide was used. The pH of the reagents was adjusted to pH=1 with sulphuric acid, or was not altered. Results showed that the addition of soluble Fe(II) increased the temperature of the soil slurry and the use of stabilized hydrogen peroxide resulted in a lower heat generation. The treatment reduced the COD of the soil of about 40%, pH was lowered and natural organic matter became less hydrophobic. The highest atrazine conversion (89%) was obtained in the conditions: 3 PV, Fe(II):H2O2=1:11 with stabilized hydrogen peroxide added in two steps. The stabilizer only increased H2O2 life-time significantly when soluble Fe(II) was added. Results indicate as preferential degradation pathway of atrazine in soil dechlorination instead of dealkylation.  相似文献   

20.
The behavior and fate of triasulfuron (TRS) in water and soil systems were examined in laboratory studies. The degradation of TRS in both buffer solution and soil was highly pH-sensitive. The rate of degradation could be described with a pseudo first-order kinetic and was much faster at pH 4 than at pH 7 and 9. Aqueous hydrolysis occurred by cleavage of the sulfonylurea bridge to form 2-(2-chloroethoxy) benzenesulfonamide (CBSA) and [(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] (AMMT). AMMT was unstable in aqueous solutions in any pH condition but it degraded more quickly at pH 4 and 9. CBSA did not degrade in aqueous solutions or in enriched cultures but it underwent a quick degradation in the soil. The rates of TRS degradation in sterile and non-sterile soils were similar, suggesting that microorganisms played a minimal role in the breakdown process. This hypothesis is supported by the results of studies on the degradation of TRS by enriched cultures during which the molecule underwent a prevalently chemical degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号