首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
硅基材料因其具有较高的理论比容量被认为是具有广阔前景的锂离子电池负极材料,在近年来得到广泛的研究;但是硅较差的电子导电性和在充放电过程中的巨大的体积膨胀问题,导致其具有较差的循环性能,阻碍了它的商业化应用。本文从介绍硅材料储锂机制及失效原理出发,重点综述了近年来对硅基材料的改性研究,主要包括对硅材料的纳米化及维度设计、硅复合材料的制备及其结构设计、新型粘结剂与电解液/电解液添加剂的研究和预锂化技术的研究。最后文章对硅基负极材料的结构设计、性能改进研究进行了总结,并展望了高容量硅基负极材料在高比能锂电池等领域的应用前景。  相似文献   

2.
硅基负极材料由于具有比容量高、安全及商业发展前景好等优点而受到业界广泛关注,但锂离子电池硅基负极存在循环寿命短和首次库仑效率低等问题,采用硅基负极预锂化技术可有效改善这类问题。综述硅基负极材料预锂化技术的最新研究进展,着重阐述稳定的金属锂粉末、电化学预锂化、添加剂预锂化及机械预锂化等技术,并展望未来硅基负极预锂化的研究方向。  相似文献   

3.
在锂离子电池众多负极材料中,硅具有超高的理论比容量(4 200 mA·h/g)和较低的嵌锂电位(约为0.4 V vs Li/Li+),是制备高能量、高功率锂离子电池理想的负极材料。然而,在嵌/脱锂过程中,硅负极巨大的体积变化造成电极材料严重的结构破坏和快速的容量衰减。梳理了硅作为锂离子电池负极材料的储锂机制、结构演变、界面反应和动力学行为等方面的研究,总结了表面和界面改性在锂离子电池硅基负极材料中应用的最新进展,阐述内容主要包括硅电极的表面修饰、电解液的优化和黏结剂的开发等,并对硅负极材料表面和界面改性进行了展望。  相似文献   

4.
为了进一步增大锂离子电池的能量密度与功率密度,Si基负极材料已经得到了广泛而深入地研究。Si材料具有很高的比容量,低的电压平台,环境友好且储量丰富。然而,Si材料在充放电过程中会发生巨大的体积变化和形成不稳定的SEI膜,限制了Si基负极材料在锂离子电池中的实际应用。最近,针对Si材料作为锂电池负极材料上的缺陷而进行了大量的研究且取得了比较好的研究结果。  相似文献   

5.
锂离子电池硅/石墨/碳负极材料性能   总被引:1,自引:1,他引:0  
为提高锂离子电池硅基材料的循环性能,用高温固相热解法合成硅/石墨/碳复合材料.采用XRD、循环伏安和充放电技术表征其结构和电化学性能.考察不同的粘结剂体系和极片热处理对材料电化学循环性能的影响.结果表明:采用水性粘结剂可以提高材料的电化学性能;对极片进行热处理也可以很好地提高电极的循环稳定性.首次脱锂比容量为970.5 mAh/g,40次循环后,脱锂比容量仍高达822.1 mAh/g.  相似文献   

6.
锂离子电池的广泛应用导致大量废旧锂离子电池产生,废旧锂离子电池具有危险废弃物和可用资源的双重属性,利用不同的回收工艺实现废旧锂离子电池的高效回收再利用对环境保护和资源再生均有重要意义.在论述锂离子电池的组成和回收其中有价金属的基础上,着重介绍废旧锂离子电池材料放电预处理、负极活性物质的分离回收及负极材料的再利用,以期找...  相似文献   

7.
锂离子电池锡合金负极薄膜材料制备及性能   总被引:1,自引:0,他引:1  
采用化学沉积的方法在铜箔上制备锡薄膜,通过改变沉积条件,制得三种不同厚度和结构的锡合金负极材料.运用XRD、SEM、充放电和循环伏安等多种方法对电极结构和性能进行表征和研究.研究表明:沉积时间为10min的锡薄膜负极材料具有四方晶系结构,其表面由尺寸在4μm左右的合金颗粒构成,颗粒有大小均匀的孔洞结构,增加了电极的比表面积.该锡薄膜电极具有较高的容量,在0.01~1.00V电压区间内,电极的首次放电容量为885.7mAh/g,循环100周后放电容量仍保持在460mAh/g以上.  相似文献   

8.
锂离子电池发展的重要目标之一是高容量的负极材料,而硅材料以其高达4 200 mAh/g的理论比容量成为研究热点;但是硅负极材料有较大的体积效应,从而造成其电化学循环性能的快速下降,限制了其在生产中的应用.本研究以纳米硅与石墨不同比例的掺杂,通过高能球磨与退火处理,表明当硅与石墨比例为2:1时,首次放电比容量可达2 136.4 mAh/g,同时首次的充放电效率为85.5%; 经过35次循环之后,其可逆容量的保持率85.3%,具有良好的电化学性能.硅/石墨复合材料良好的电化学性能,使其在锂离子电池负极材料的生产及应用中具有重要研究价值.  相似文献   

9.
锂离子电池氧化物负极材料的研究   总被引:1,自引:0,他引:1  
采用氨解法制备了SnO,Sb2O3,GeO2 3种氧化物粉末,将其分别作为锂离子电池负极材料的活性物质,利用恒电流电池测试仪研究其电化学性能.研究发现,这3种活性物质有较高的电化学容量,其首次放电容量分别为1520mAh/g(GeO2),820mAh/g(Sb2O3),1040mAh/g(SnO);首次充电容量分别为800mAhg/(GeO2),520mAh/g(Sb2O3),800mAhg/(SnO).同时还发现其不可逆容量损失也较大,讨论了产生这一结果的可能原因,提出了减少不可逆容量损失的办法.  相似文献   

10.
介绍了锂离子电池的发展历程、原理、特点和趋势,引出了负极材料开发的重要性,并根据近十多年来锂离子电池碳负极材料的研究成果,综述了在可石墨化碳、无定形碳、石墨等三个主导方向上的研究进展情况,总结了目前碳材料改性的优势和不足,提出了今后发展方向。  相似文献   

11.
主要采用溶胶凝胶法合成Li4Ti5-xCoxO12负极材料,通过XRD、SEM和电化学测试手段,系统的研究了尖晶石型Li4Ti5-xCoxO12的结构和电化学性能.结果表明:0.06≤x≤0.24的样品均为纯相尖晶石型结构,掺杂Co3+对晶粒的生长有抑制作用,但团聚现象明显;引入Co元素降低了样品的首次放电比容量,但是没有影响样品的循环稳定性.  相似文献   

12.
采用结晶四氯化锡和硫代乙酰胺为原料,乙醇为溶剂,在不同反应物浓度下制备了SnS2粉体.用X射线衍射(XRD),扫描电镜(SEM),循环伏安(CV)和恒电流充放电对其进行研究.结果表明,当反应物浓度降为初始反应浓度的1/3时,制备出的样品为纳米片状六方相晶体结构,在0.01~1.2V间,以0.5C(C=646mA·g-1)的电流对其进行充放电,30次循环后容量仍保持在301mAhg1以上.具有良好的循环稳定性,说明纳米SnS2是一种有希望的锂离子电池负极材料.  相似文献   

13.
锂离子电池三元正极材料[Li-Ni-Co-Mn-O]的研究进展   总被引:2,自引:1,他引:1  
从制备性能、改性和安全性能3个方面,论述了锂离子电池三元正极材料[Li-Ni-Co-Mn-O]的研究现状,指出了其产业化所面临的问题,并给出了相应的对策.  相似文献   

14.
采用高温固相反应法合成了新型锂离子电池负极材料Li1.1VO2。用X射线衍射仪、扫描电子显微镜和恒电流充放电法研究了不同温度下合成的Li1.1VO2试样的结构、形貌和电化学性能。实验结果表明:1 100℃下合成的Li1.1VO2试样结构完整、颗粒大小均匀,具有最佳的电化学性能。在0.1C、1C倍率下,放电容量分别为313.2,210.5 mA.h/g;在1C倍率下,经过50次循环后,放电容量保持率高达95.45%。  相似文献   

15.
采用高温固相反应法合成了新型锂离子电池负极材料Li1.1VO2。用X射线衍射仪、扫描电子显微镜和恒电流充放电法研究了不同温度下合成的Li1.1VO2试样的结构、形貌和电化学性能。实验结果表明:1 100℃下合成的Li1.1VO2试样结构完整、颗粒大小均匀,具有最佳的电化学性能。在0.1C、1C倍率下,放电容量分别为313.2,210.5 mA.h/g;在1C倍率下,经过50次循环后,放电容量保持率高达95.45%。  相似文献   

16.
介绍了充放电过程中具有“零应变”等优异特性的Li4Ti5O12的晶体结构、嵌锂特性,对其制备、改性及应用研究现状进行了总结.在此基础上,分析了当前研究存在的问题,并指出了进一步研究的可能方向.  相似文献   

17.
智能锂电池充电器设计   总被引:1,自引:0,他引:1  
为解决锂电池的快速充电问题,设计一种具有电压和电流检测功能的智能锂电池充电器系统,并给出了相关单元模块电路及其驱动程序的流程图。该设计以MSP430单片机为控制核心,对电池进行电压电流采集,通过判断电池所处的充电状态,调整PWM(Pulse Width Modulation)波的占空比,以实现高精度控制充电。实验结果表明,该智能充电器可安全地进行锂电池的快速充电,耗时约1h,比一般充电器(2~3h)的充电速度有显著提高,从而有效缩短了锂电池的充电时间。  相似文献   

18.
介绍了一种新型锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的研究概况,分析了该材料的结构特点和电化学性质,总结了三元材料的主要制备方法,以及如何利用掺杂和包覆对其进行改性,以提高其性能,并指出了三元材料的发展前景和今后的研究方向.  相似文献   

19.
硬碳具有高容量,优异的倍率特性和良好的低温性能,成为电动车电池最具潜力的负极材料.综述了硬碳材料的研究和应用进展,指出任意堆积的石墨烯层结构决定了硬碳材料的性能;原材料和制备工艺会影响硬碳材料的规模化生产质量和应用.随着电动汽车产业的兴起和硬碳材料应用的增长,其相关应用研究将成为热点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号