首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
基于邵家台软岩隧道工程地质施工状况,确立了邵家台隧道围岩变形监测方案;结合现场监测数据和软弱围岩变形特征,研究了邵家台隧道软弱围岩变形演变过程的时间效应影响,该研究对类似软岩隧道的设计、施工具有参考价值。  相似文献   

2.
软弱围岩在高地应力作用下发生大变形及破坏的特征不仅受围岩本身力学性质的影响,还与原始地应力状况及工程因素等有关。榴桐寨隧道埋深约1 400 m,围岩以软岩为主,构造带可能应力集中,软岩存在大变形问题。隧道软质岩大变形主要影响因素包括地应力条件、岩体强度、地质构造影响程度、地下水发育特征、围岩分级、岩石膨胀性。当围岩内部的最大地应力与围岩强度的比值达到某一水平时才可能发生软岩大变形。研究表明,当强度应力比小于0.3~0.5时,即能产生比正常隧道大一倍以上的变形。通过对榴桐寨隧道发生软岩大变形的机理研究,找到一套行之有效的施工控制措施是保障施工及运营期安全的关键。  相似文献   

3.
王超超 《浙江建筑》2021,(2):29-32,44
隧道大变形已成为高应力软岩地层隧道施工中较为常见的问题.以新建铁路丽江至香格里拉线白岩子隧道软岩大变形施工为背景,对软岩大变形隧道进行了分类,通过现场试验对比不同支护参数下围岩变形抑制效果以及施工造价,提出了相对合理的大变形控制施工措施,主要结论如下:1)白岩子隧道大变形应为高地应力作用下的软弱节理围岩引起的挤压性大变...  相似文献   

4.
张秀良 《建筑机械化》2021,42(6):26-28,38
以兰渝铁路LYS-2标段胡家湾隧道、马家坡隧道为背景,揭示了断层破碎岩体、上第三系粉细砂岩等软弱围岩地质特征和变形特征;分析了隧道软弱围岩大变形的产生原因,并提出了通过形成断面闭合支护体系控制软岩大变形的施工方法.结合现场上台阶临时仰拱法、CRD法施工,介绍软弱围岩隧道闭合支护体系的形成过程.实践证明,闭合支护体系应用于兰渝铁路LYS-2标软弱围岩隧道大变形控制中取得了较好的效果.  相似文献   

5.
张向红 《门窗》2020,(3):67-68
滇西红层软岩具有变形量大、变形速率快的特点,在该地质条件下开挖极可能发生软岩大变形甚至发生失稳坍塌等安全事故。本文主要结合云南大理至临沧铁路大保山隧道滇西红层软弱围岩施工实例,对滇西红层软岩大变形进行原因分析,并详细阐述了软岩施工控制技术,对类似铁路隧道工程提供借鉴。  相似文献   

6.
隧道在穿越断层地带时由高地应力引起的软岩大变形问题是隧道建设施工中难点,给隧道建设的施工与进度带来很大影响。本文结合区域地应力,围岩强度实验等分析柿子园隧道穿越断层地区产生支护结构破坏现象的原因,并对围岩压力,钢架应力,围岩变形进行了现场监测,得到了高地应力软岩大变形引起的支护应力特征与变形特征,提出了控制大变形的技术措施。研究表明,高地应力区软岩隧道穿越断层地带时,由于复杂的构造应力造成隧道结构受力不均,隧道左右两侧围岩压力,支护内力与围岩变形呈现出很大的不对称性。采用优化断面形式、加强初支刚度、非对称预留变形量和锚杆布置等措施可以有效减小隧道结构受力,控制隧道变形。  相似文献   

7.
深部软岩隧道施工性态时空效应分析   总被引:13,自引:7,他引:13  
随着我国交通事业的迅速发展,在深部岩体中修筑隧道工程已必不可少,随之而来的深部岩体所具有的特殊工程地质问题也更加突出。主要对深部软岩隧道工程中施工力学性态和变形时空效应进行三维非线性黏弹性数值模拟,并将计算结果与现场实测数据进行比较验证。研究结果表明,计入围岩流变效应,考虑深部软岩隧道时空效应影响,在作业面影响范围内,开挖面空间效应占主导因素,围岩应力随距作业面距离的加大而逐步释放;在此范围外,软弱岩体流变属性得以充分发挥。通过分析和施工实践证明,对于深埋软岩隧道应尽早施作衬护,以改善承载环范围内围岩受力,减少扰动,提高围岩自承能力;由于软岩流变效应显著,必须适时设置二次衬砌以承受来自围岩的后期流变压力,限制围岩大变形。研究成果丰富了地下工程施工力学理论,可应用于工程实践。  相似文献   

8.
为了研究下卧有软弱夹层的软岩隧道锚的承载特性,以拟建的某大桥隧道锚工程为依托,开展缩尺比例为1∶10的隧道锚原位模型试验。通过对模型锚开展荷载试验、蠕变试验和破坏试验等,隧道锚在下卧有软弱夹层的软弱围岩(泥岩)中,是具有一定的承载能力和长期稳定性的。该类隧道锚的拉力向和锚塞体前部的铅直向的地表围岩变形曲线以隧道锚中心轴线为对称轴分别近似呈现出"M"形和"倒V"形,铅直向地表围岩变形从锚塞体前端至后端逐渐减小。对于深部围岩变形,该类隧道锚在拉力向的变形控制应以锚间深部岩体变形为主,在铅直向的变形控制应以锚塞体前部深部围岩变形为主。此外,研究还得出下卧有软弱夹层的软岩隧道锚的破坏模式。研究成果可为类似的隧道锚工程的设计、施工等提供参考和借鉴。  相似文献   

9.
在高海拔地区进行软岩隧道施工过程中,受不良地质、恶劣自然条件等因素的影响,导致软岩隧道工程施工效果比较差,初期支护过程中容易产生变形开裂的情况。为了保证隧道工程的施工质量和施工安全,需要将隧道初期支护变形开裂控制好。本文以实际工程为例,对高海拔地区软弱围岩的变形机理进行了分析,并合理地安排了施工,保证了高海拔地区软岩隧道的施工质量。  相似文献   

10.
软岩大断面隧道超前支护技术虽然已做了大量的研究,提出了多种超前支护方法,但关于深埋软弱围岩的概念、分类、各类软弱围岩的变形力学机制、软弱围岩难支护的原因、软弱围岩支护的力学原理、支护原则与支护对策等一系列的软弱围岩工程地质力学理论方面的问题尚未系统解决。以宝峰隧道为例,研究了软岩隧道超前支护方法,提出了一种超前注浆预衬砌支护新方法,并进行了试验和检验,取得了良好的效果。  相似文献   

11.
唐家山隧道位于构造地震断裂带,地质水文条件复杂,岩性及构造产状变化大,受5.12汶川地震的影响,含水破碎软岩变形比较突出,对施工中围岩变形控制要求较高。现场通过监控量测结合数值分析,探讨了隧道穿越软弱破碎岩层下围岩非线性变形特性,确定了隧道二次衬砌支护合理距离和时机,总结了唐家山软弱围岩变形特点。  相似文献   

12.
结合软岩隧道工程地质和支护特点,对乌鞘岭隧道F7断层软岩施工中的力学性态进行了计算分析.对于施工中出现的软岩挤压大变形问题,从岩体流变学和隧道施工力学的观点与方法出发研究围岩的受力和变形,分析了隧道施工过程的三维时空效应,有机地耦合了作业面的空间效应和软岩时效特性.考虑围岩流变特性,分析了围岩-支护系统变形、受力随时间发展规律,并将计算成果和现场实测数据进行了比较验证,以使力学计算更好地参与到隧道信息化设计和施工中.  相似文献   

13.
高地应力深埋软岩隧道开挖卸荷后,断面周边围岩的径向应力急剧降低,围压从围岩深部至隧道洞壁急剧衰减,不同位置岩石的应变软化和剪胀扩容受围压效应的控制。基于三维H-B强度准则建立考虑围压效应和中主应力的深埋软岩隧道弹塑性解计算方法,并依托中老铁路新华隧道计算深埋滇中红层软岩隧道的挤压变形,讨论围压效应和中主应力对围岩应力–应变特征、强度软化特征和剪胀扩容特征的影响,探讨围压效应在不同峰值强度、原岩应力和支护反力下的敏感性。研究结果表明:围压效应通过降低岩石的临界塑性偏应变η*和增大岩石的峰值剪胀扩容系数Kψp,从而加剧围岩的软化和剪胀程度,进而加剧隧道的挤压变形;中主应力会降低围岩的软化程度,加剧围岩的剪胀扩容,但整体上能有效抑制深埋软岩隧道的挤压变形;岩石峰值强度越低、埋深地应力越大时,隧道的挤压变形受围压效应的影响程度越高。因此分析高地应力深埋软岩隧道开挖卸荷的力学响应时,不能忽视围压效应的影响;支护反力能有效抑制效围压效应对隧道挤压变形的影响,在深埋软岩隧道的施工建设时应及时施作支护结构约束围岩的变形。  相似文献   

14.
为解决高地应力条件下软弱围岩大变形造成的断面缩小、基角下沉等破坏问题,分析了隧道内软弱围岩的受力情况,并建立了数值分析模型,对两种不同的开挖方法进行了模拟分析,以探索出更好的控制高地应力软岩隧道变形的措施。  相似文献   

15.
在高地应力软岩地层中开挖隧道,易引发挤压性大变形,是隧道建设中的主要难题之一。依托成(成都)兰(兰州)铁路茂县隧道,通过岩石试验和现场测试,分析茂县隧道的变形特征及破坏模式,研究挤压性软岩大变形隧道的变形和支护作用机制。研究结果表明:高地应力软岩隧道施工期间围岩变形量大、速率快,围岩的挤压流动现象明显,变形持续时间长;围岩松动圈层数多、范围广,拱部锚杆受压,与围岩形成"压缩带",共同承载;支护结构承受较大的围岩形变压力,初支钢架多为"屈服承载"或破坏,破坏形式多样,但位置集中;围岩以剪切破坏为主,裂隙扩容现象明显,注浆对加固围岩及保持锚杆作用效果显著;多层支护可有控制的释放围岩变形,改善结构受力,降低围岩流变特性的影响。  相似文献   

16.
不良地质隧道施工过程中常出现突水突泥、坍塌、软岩大变形等灾害,这些灾害严重影响了隧道的正常建设,困扰着广大工程技术人员。某铁路隧道施工过程中出现软岩变形问题,从隧道所处的地质构造、围岩量测数据等方面分析了初期支护的变形特征和原因,采用径向注浆、更换格栅钢架、排堵结合治水、先墙后拱法施做二次衬砌等措施,控制了围岩变形,解决了工程难题。可供其他工程参考借鉴。  相似文献   

17.
近年来,隧道变形控制观念已经成为隧道施工中主要的指导原则.高地应力软岩隧道施工面临的最大难题就是大变形.纸坊隧道作为新建兰渝铁路线重点工程之一,属炭质板岩双线隧道,在施工中采用了多种方法对围岩变形进行预测,通过多种措施组合施工,有效控制了隧道围岩变形,加快了施工进度,成功穿越了Ⅳ、V软弱围岩以及多处断层破碎带.取得了较好的技术效益、经济效益和社会效益.  相似文献   

18.
强震后软岩隧道的变形和破坏特征与一般隧道不同。根据“5.12”强震区唐家山隧道围岩变形与应力监测数据,对震后软岩隧道变形与破坏机制进行了分析。研究表明:(1)震区软岩隧道变形空间分布不对称,水平收敛是拱顶沉降的2~4倍,这是震后软岩的扩容性质和隧道所处的垂直方向高地应力环境所共同决定的;(2)隧道变形的空间效应约束范围为2~3D,在开挖面约束范围内,变形是空间效应和时效应的耦合;(3)隧道不同部位的围岩变形与破坏方式与围压性质密切相关,边墙处围岩在“形变压力”作用下易发生松弛大变形;拱部一定范围内的岩体存在整体下沉现象,拱部围岩易被架空而形成“松散压力”并诱发位移突变和破坏。研究对同类工程具有一定参考价值。  相似文献   

19.
《国外建材科技》2021,(1):71-74
软弱围岩由于岩性软弱、整体性差等特点成为了隧道开挖过程中的研究重点。该文主要研究了隧道软弱围岩的受力变形,首先选取不同类型的软岩作为研究对象,采用预留核心土的三台阶法进行施工,利用ANSYS有限元软件进行数值模拟,分析了不同等级的软岩的受力变形特点以及仰拱对于围岩稳定性的影响。研究表明:在开挖过程中,隧道上台阶、下台阶周边岩体在水平方向上有明显阶段性变形,且上台阶对拱顶围岩扰动最大,易产生较大沉降;岩体被挖出时剩余围岩转角处易出现应力集中现象从而导致局部围岩发生失稳破坏;仰拱能够有效限制围岩的变形,减少围岩内部应力,从而提高隧道的整体稳定性。  相似文献   

20.
黄洪海  张骋  易琨 《建筑工人》2020,41(2):34-35
正软弱围岩(以下简称软岩)施工产生大变形的原因主要包括:自然因素,即围岩的特性、初始的应力状态和水文地质条件等;工程因素,即不合理的工程设计、施工方法等。构筑在软岩中的隧道,施工时常会发生较大变形,为此,在施工中常采取以下措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号