首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 687 毫秒
1.
裂缝长度对岩石动态断裂韧度测试值影响的研究   总被引:4,自引:2,他引:2  
 为了考察裂缝长度对试件动态断裂韧度测试值的影响,采用圆盘直径为80 mm变化裂缝长度的大理岩中心圆孔裂缝平台巴西圆盘试件,在霍普金森压杆系统上进行动态冲击劈裂试验。对不同裂缝长度试件动态试验时弹性压杆上测得的应变波形以及试件的断裂模式进行分析,用试验–数值的方法确定大理岩的动态断裂韧度。结果表明,在平均加载率为2.96×104 MPa·m1/2·s-1的条件下,大理岩动态断裂韧度均值是其静态断裂韧度均值的2.6倍,随着裂缝长度的增加,动态测试值没有静态测试值的变化显著,最后对与试件尺寸和构形无关的动态断裂韧度的确定方法进行讨论。  相似文献   

2.
为了考察中心圆孔裂缝平台巴西圆盘试件直裂缝非一致性起裂对测试岩石动态断裂韧度带来的影响,在霍普金森压杆冲击系统上对圆盘试件进行冲击试验,获得了端部加载载荷和裂纹前缘不同点的起裂时刻,并借助ANSYS动态有限元分析得到了圆盘试件三维裂纹前缘不同点的动态应力强度因子时间历程曲线,采用实验—数值方法计算得到相应的动态断裂韧度值。结果表明:裂纹前缘点对应动态应力强度因子值沿厚度方向逐渐递增;二维分析方法得到的动态应力强度因子与三维分析方法裂纹前缘中心处的值最为接近,两者的相对误差小于5%,对应确定的动态断裂韧度值相对误差小于1.2%。如果不考虑圆盘厚度影响,假设试件在圆盘表面起裂,由裂纹前缘其它点所求得的动态断裂韧度值与二维方法得到的值相对误差最大可以达到23%,采用二维简化方法存在较大的误差。  相似文献   

3.
采用LS-DYNA有限元软件,对含中心裂纹的岩石巴西圆盘试件在冲击压缩荷载作用下的变形过程进行数值分析。基于虚拟裂纹闭合技术,提出在冲击载荷作用下裂纹结构能量释放率和动态应力强度因子的计算方法,得到巴西盘试件的能量释放率和应力强度因子与时间的关系曲线,并给出不同冲击速率对该曲线的影响。对含中心裂纹的岩石巴西盘试件在冲击压缩荷载作用下I型断裂参数与II型断裂参数的时间历程曲线进行比较。计算结果表明:在相同冲击速度下,在同一时刻II型断裂参数的数值比I型断裂参数小几个量级,含中心裂纹的巴西盘试件可作为I型断裂模型处理。  相似文献   

4.
采用中心圆孔裂缝平台圆盘确定岩石的动态断裂韧度   总被引:10,自引:0,他引:10       下载免费PDF全文
由于带有预制裂缝岩石试件的难于制作以及动态研究的复杂性,岩石动态断裂韧度在研究方法上一直也没有统一的标准,有必要对其测试方法进行研究。采用大理岩制作了一种含有中心圆孔预制裂缝宽度小于1mm的平台圆盘试件,在霍普金森压杆系统上进行了动态冲击试验,并采用实验-数值方法,确定其动态断裂韧度。该方法基于一维应力波理论,采用Hopkinson弹性压杆上应变片获得作用在试件两端面的动态载荷P(t),输入此载荷,利用动态有限元法求得试样内动态应力强度因子KI(t)随时间的变化历程,对应于试件上应变片测得的起裂时间tf的动态应力强度因子KI(tf)即为材料的动态起裂断裂韧度KId。  相似文献   

5.
根据Central Cracked Circular Disk-Split Hopkinson Pressure Bar(CCCD-SHPB)测试原理,采用平台巴西圆盘开展温度对岩石类材料动态断裂性能影响的实验研究。实验中控制加载速率基本一致,仅改变试件测试的温度,实现了岩石材料在同一加载速率、不同温度下的动态断裂实验,进而开展岩石材料动态断裂韧度的温度相关性研究。实验结果表明,当温度处于8~100℃时,动态断裂韧度随着温度的升高而逐步下降,近似呈线性关系。  相似文献   

6.
加载速率对岩石动态断裂韧度影响的实验研究   总被引:4,自引:0,他引:4  
李战鲁  王启智 《岩土工程学报》2006,28(12):2116-2120
为了获得岩石在高加载速率作用下的动态断裂韧度值并分析加载速率的影响,由分离式霍普金森压杆入射杆杆端附加劈尖及其基座对边切槽圆盘试样施加动态劈裂载荷。把应变片粘贴在裂纹尖端附近获得裂纹扩展时间;将劈裂载荷时间历程及裂纹扩展时间输入有限元计算模型,获得试样的起裂动态断裂韧度值。结果表明,在加载速率18.85×104MPa.m1/2s-1以下,大理岩的动态断裂韧度值随着加载速率的增大而上升,但上升趋势逐渐减弱。断裂韧度数值在高加载速率下呈现出明显的离散性。  相似文献   

7.
《Planning》2017,(1)
以圆形紫铜片作为波形整形器,利用直径100 mm的霍普金森压杆装置,研究了不同弹速冲击下高强混凝土平台巴西圆盘试件的动态拉伸强度,得到了高强混凝土在冲击作用下的劈裂强度、破坏模式和应力时程曲线。试验结果表明:随着冲击应变率的提高,高强混凝土试件的动态劈裂强度和破坏程度不断增大,具有显著的应变率敏感性。高速冲击荷载下的混凝土断面区较为光滑,裂缝直接穿过石子导致试样断裂。  相似文献   

8.
 利用大直径(?100 mm)分离式霍普金森压杆对大尺寸(150 mm×80 mm)压缩单裂纹圆孔板(SCDC)试样冲击加载,采用实验–数值–解析法测定了青砂岩的I型动态起裂韧度和动态扩展韧度。试样的起裂时刻和裂纹扩展速度由黏贴在裂尖附近的裂纹扩展计确定,通过对比发现,裂纹扩展计的准确性和灵敏性都比黏贴在同一试样对应位置的普通应变片更好。实验–数值–解析法根据实验数据获取试样两端的加载历程,利用有限元数值计算和普适函数的半解析修正,综合考虑材料惯性效应和裂纹扩展速度对动态应力强度因子的影响,较准静态方法更适于采用大尺寸试样确定岩石动态断裂韧度。实验–数值–解析法所确定的高加载率和高裂纹扩展速度下砂岩的动态断裂韧度值分别随动态加载率和裂纹扩展速度的提高而增加。最后,通过对SCDC试样裂纹扩展路径上应变片的断裂时间分析,确定了利用SCDC试样实现动态止裂的可能性。  相似文献   

9.
 提出测试I型断裂韧度的一类新型试样,包括边裂纹平台圆环、边裂纹平台半圆环、边裂纹平台半圆盘,以及它们没有平台的情况,一共6种构型。采用有限元方法标定这一类边裂纹平台(半)圆环(盘)的量纲一化的应力强度因子,分析其变化规律,并给出相应的曲线拟合公式。结果显示,边裂纹(平台)圆环试样量纲一化的应力强度因子–裂纹长度曲线具有先升后降的特殊性质,这使得它们的测试临界点容易从对应的载荷–位移曲线判断和确定,可以方便地测试材料的断裂韧度。边裂纹平台半圆盘也有类似的性质,但试样宜选取较大的平台角,而边裂纹半圆盘和边裂纹(平台)半圆环却没有这种性质。此外,经过初步试验,用边裂纹平台半圆盘和边裂纹平台半圆环试样测得砂岩的断裂韧度,与用国际岩石力学学会建议试样所测结果吻合。  相似文献   

10.
裂纹群对隧道围岩的动力学特性影响机制复杂程度远大于单裂纹缺陷。为了研究裂纹群对隧道围岩破坏行为的影响机制,采用PMMA制备含倒U型孔洞裂纹模型试样模拟含裂纹缺陷围岩工况,利用落锤冲击试验机进行动态加载,分析遭受冲击载荷作用下裂纹群在围岩内的损伤演化规律,随后采用有限差分法软件进行数值分析,对比论证试验结果的科学性,及分析在冲击载荷作用下裂纹群对围岩应力状态的影响,结果表明:(1)裂纹群对裂纹的扩展速度有显著地促进作用,多裂纹试件的裂纹扩展速度是单裂纹试件的1.277倍,且多裂纹试件的裂纹起裂时间明显缩短;(2)相对于单裂纹缺陷试件而言,多裂纹试件的动态断裂韧度明显降低,为单裂纹的58.72%;(3)多裂纹试件内I/II复合裂纹的起裂明显易于纯I型裂纹,且动态断裂韧度与II型动态应力强度因子有很大关系。  相似文献   

11.
马聪  权威  任志磊 《山西建筑》2010,36(36):75-76
采用SHPB试验装置对盐岩平台巴西圆盘试样实施了动荷载试验,获得了盐岩在动荷载下的拉伸强度,并与静态实验进行了比较,结果表明盐岩的动态拉伸强度具有明显的应变率相关性。  相似文献   

12.
 为研究岩石在冲击荷载作用下岩石的破裂过程,运用岩体裂纹扩展破坏二维分析程序DDARF(Discontinuous Deformation Analysis for Rock Failure),对大理石巴西圆盘试样在分离式霍普金森压杆(SHPB-Split Hopkinson Pressure Bar)试验中动态破裂全过程进行了数值模拟分析研究。模拟结果形象展示了试样在不同入射波作用下裂纹的萌生、演化、扩展及贯通破坏情形,与试验结果有较好的吻合。对裂纹产生的力学机理、扩展过程及伴生现象做出了解释。研究结果表明:(1) 改进的微观破裂准则不仅适用于模拟岩石静载破裂,而且可以用于模拟动载破坏;(2) 巴西圆盘试样在受到冲击荷载作用时,主裂纹首先从一端产生,然后逐渐沿径向加载方向向中心延伸、扩展至另一端贯通破坏,裂纹尖端的拉应力是导致岩石开裂的原因;(3) 主裂纹拓展过程中伴随着次生损伤微裂纹的产生,次生微裂纹主要集中在主裂纹两侧附近区域;(4) 试样两端与入射杆、透射杆接触部分会产生三角形破裂区,且随着入射波幅值的增大,三角形破裂区域面积有增大的趋势。  相似文献   

13.
大理岩动态劈裂试样的破坏应变   总被引:2,自引:1,他引:2  
脆性材料基于应变的强度准则逐渐受到重视,为研究岩石在动态拉伸条件下的破坏应变规律,利用分离式Hopkinson压杆对不同尺寸的大理岩巴西圆盘和带平台的巴西圆盘进行宽应变率范围的动态劈裂试验。研究不同类型的试样在不同应变率下的破坏应变,讨论试样尺寸、弹速、应变率对破坏应变的影响,得到了一些有益的结论:(1)大理岩的破坏应变随撞击压杆的弹速提高而增大,在一定的弹速范围内破坏应变增加趋势明显,而在此范围外破坏应变增幅很小;(2)试样尺寸对岩石的动态破坏应变的影响受弹速的影响比较显著;(3)在低应变率下,大理岩的动态破坏应变随着应变率的提高而显著增大,而带平台的试样的增加幅度更大,且数据的分散性也较小;当应变率较大时,应变率对破坏应变的影响较小,应变增幅较小,各类试样数据的分散程度都有所降低;(4)和巴西圆盘相比,在低应变率下平台巴西圆盘具有更大的承载力和更高的破坏应变,但是随着弹速的增加,平台巴西圆盘的趋势逐渐减少;当弹速大于某一数值时,其破坏应变反而小于巴西圆盘的破坏应变。  相似文献   

14.
不同赋存深度岩石的动态断裂韧性与拉伸强度研究   总被引:5,自引:2,他引:3  
按照国际岩石力学学会试验规范以及工程岩体试验方法标准(GB/T50266-99),对不同赋存深度的玄武岩试件分别进行动态断裂韧性测试和单轴拉伸强度测试,得到动态断裂韧性与拉伸强度之间可能存在一定的关系;并从岩石破坏的力学机制角度,分析动态断裂韧性与拉伸强度之间存在联系的根本原因:两者均是由于岩石内部微裂纹受到拉应力作用而引起微裂纹的扩展、互相贯通,从而导致岩石的破坏。根据动态断裂韧性与拉伸强度之间可能存在的关系,可以由拉伸强度的测试结果推测试件的动态断裂韧性值,将大大简化动态断裂韧性测试的繁琐性。  相似文献   

15.
 岩石断裂韧性对于定量评价页岩储层可压裂性具有重要意义。基于此,根据直缝切槽巴西圆盘实验(SNBD),测定了14块龙马溪组储层页岩的I型(张开型)、II型(划开型)断裂韧性。并利用上述实验结果,结合岩心所处深度处的测井数据,选择密度、声波时差、GR测井数据回归了页岩的断裂韧性。与前人基于抗拉强度建立的断裂韧性预测模型相比,建立断裂韧性与地球物理测井数据的直接联系。由预测模型可以看出,富有机质页岩I型和II型断裂韧性均与岩石密度、声波时差成正比,与页岩泥质含量成反比。即页岩中有机质(TOC)含量或黏土矿物越多,页岩断裂韧性越小,页岩起裂后越容易向前延伸。结果表明,计算断裂韧性与实测断裂韧性相关性较好。模型的建立可以为工程设计过程中找出“甜点”提供重要理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号