首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Out-of-plane microlenses are an important component for integrated optics. Unlike their in-plane counterparts, the fabrication of out-of-plane microlenses is more complicated, which limits their applications. In this paper, a new technique that is capable of fabricating out-of-plane microlenses is described. The resulting lenses have pre-definable focal length and can focus light beams not only in the horizontal plane, but also in the vertical plane. The fabrication process is completely compatible with the soft lithography technique. The lens chamber with two thin polydimethylsiloxane (PDMS) membranes was designed and fabricated together with microfluidic or other components using the same UV lithography mask. The lens was then formed in an in-situ fashion. Curable polymers were injected into the lens chamber and cured while pneumatic pressure was applied to keep the PDMS membranes deformed in a quasi-spherical profile. Pneumatic pressure and membrane thickness can be adjusted to control the resulting lens focal length. With a group of lens chambers with different membrane thickness, a single pressure line can be used to fabricate microlenses with different focal lengths. Since cured polymer was used as the lens filling material, the resulting lens can be used without a pressure source. Different polymers can be selected for desirable optical properties. The simulation and experimental results have proved the feasibility of this technique and resulting lens showed good focusing ability for a divergent light beam from an on-chip multi-mode optical fiber. The small design footprint, total compatibility with soft lithography and technical versatility of this technique make it particularly useful for intergrating out-of-plane microlens into microfluidic chips, which may open new possibilities for the development of on-chip optical detection system.  相似文献   

2.
A new method for producing microlens array with large sag heights is proposed for integrated fluorescence microfluidic detection systems. Three steps in this production technique are included for concave microlens array formations to be integrated into microfluidic systems. First, using the photoresist SU-8 to produce hexagonal microchannel array is required. Second, UV curable glue is injected into the hexagonal microchannel array. Third, the surplus glue is rotated by a spinner at high velocity and exposed to a UV lamp to harden the glue. The micro concave lens molds are then finished and ready to produce convex microlens in poly methsiloxane (PDMS) material. This convex microlens in PDMS can be used for detecting fluorescence in microfluidic channels because a convex microlens plays the light convergence role for optical fiber detection.  相似文献   

3.
Yang  H.  Shyu  R. F.  Huang  J.-W. 《Microsystem Technologies》2006,12(10):907-912

A new method for producing microlens array with large sag heights is proposed for integrated fluorescence microfluidic detection systems. Three steps in this production technique are included for concave microlens array formations to be integrated into microfluidic systems. First, using the photoresist SU-8 to produce hexagonal microchannel array is required. Second, UV curable glue is injected into the hexagonal microchannel array. Third, the surplus glue is rotated by a spinner at high velocity and exposed to a UV lamp to harden the glue. The micro concave lens molds are then finished and ready to produce convex microlens in poly methsiloxane (PDMS) material. This convex microlens in PDMS can be used for detecting fluorescence in microfluidic channels because a convex microlens plays the light convergence role for optical fiber detection.

  相似文献   

4.
Out-of-plane microlens, as its in-plane counterpart, is an important micro optics component that can be used in building integrated micro-optic systems for many applications. In earlier publications from our group, an ultra violet (UV) lithography based technique for out-of-plane microlens fabrication was reported. In this paper, we report a replication technology for time-efficient fabrication of out-of-plane microlens made of a curable polymer, NOA73. Microlens of cured SU-8 polymer was fabricated using a unique tilted UV lithography process, polydimethylsiloxane (PDMS) was molded using the resulting SU-8 master to form a negative mold, curable polymer NOA73 was then casted in the PDMS mold and out-of-plane microlens replica made of NOA73 was finally obtained after curing. The entire replication process took less than 5 h. Since PDMS negative mold was reusable, multiple replications of the microlens could be done with the same mold and each replication only took about 30 min. Scanning electron microscopic (SEM) images showed that NOA73 microlens replica had almost identical shape as the SU-8 master. In Comparison to the SU-8 microlens, microlens replica of UV curable polymer had slightly longer focal length and smaller numerical aperture due to the lower refractive index of NOA73. In addition, NOA73 microlens replica also had improved spectral transmission. Because of its compatibility with soft lithography technique, the reported replication process may also be used to integrate out-of-plane microlens into micro-opto-electro-mechanical-systems (MOEMS) and BioMEMS chips.  相似文献   

5.
This paper describes a novel concept of integrated on-chip fiber free laser-induced fluorescence detection system. The poly-dimethylsiloxane (PDMS) chip was fabricated using soft lithography and was bonded with a glass substrate of 150 μm thickness that reduced the distance of channel-to-sidewall to less than 180 μm. The cells and particles detection was conducted by an external single fiber close to the glass substrate that transmitted laser light for simultaneous excitation and receipt of the emission light signals. The performance of the proposed device was demonstrated using fluorescence beads, stained white blood cells, and yeast cells. The experimental results showed the simplicity and flexibility of the proposed device configuration which can provide convenient on-chip integration interface for fast, high throughput, and low-cost laser-induced fluorescence detection micro flow cytometer.  相似文献   

6.
In this paper, a MEMS-based monolithic three-axis fiber-optic acceleration sensor is proposed, consisting of three optical fiber collimators and a three-axis acceleration sensing chip. The novel acceleration sensor includes two horizontal sensing units and one vertical sensing unit integrated on a single silicon substrate. Three optical fiber collimators are on the same side of the three-axis sensing chip, thus reducing the package size and cost. In each sensing unit, the micromirror, suspended on a pair of torsion beams, has a torsional angle in response to acceleration in sensing direction. The torsion angle is monitored using fiber-optic detection technique. The sensing system operation principle has been analyzed theoretically, its mechanical performances were simulated using the FEM simulation, and its fabricated process flow was proposed. Using bulk micromachining technologies, the horizontal and the vertical sensing units were successfully fabricated. Finally the individual fabricated sensing units were packaged and tested.  相似文献   

7.
In this paper we report the design and fabrication of a beam relay for free space optical interconnection using microlens arrays. Multiple microlens arrays with same focal lengths were designed and fabricated in an out-of-plane layout. This design can be easily integrated with silicon-based optical interconnection devices. The beam relay was fabricated using direct lithography of SU-8 photoresist, and then replicated using UV curable polymer molded with a PDMS intermediate mold. The optical performance was tested and the experimental results show that the optical performances are mainly limited by the aberration of microlenses. Further study needs to be conducted to improve the surface quality of the lenses to reduce the aberrations.  相似文献   

8.
The optic alignment module containing out-of-plane 3D micro lenses, and micro optic fiber holders have been fabricated using tilted UV lithography technique in water with SU-8 photoresist (Ling and Lian in Proc SPIE 4979:402–409, 2007). Each holder is a circumscribed quadrilateral formed by a V-groove and pairs of fixed microclips, which will hold the fiber in position through the elastic deformation when the fiber is inserted. Since these microclips were fixed cantilever beams and its effective beam length, the distance between the fixed end of the beam and beam–fiber contact point, is very short (~62.5 μm), the stress on the beam is high even under a small (few microns) deformation. The inserted optical fiber was either too loose to lose its alignment accuracy, or too tight causing the clips to break because of dimensional tolerance. It becomes very difficult, if not impossible, to use them in practical applications. Therefore, the key issue of fabricating optical alignment module is to have a suitable stiffness of microclips with an appropriate deformation during the fiber insertion, which can provide enough force to hold the fiber for accurate alignment and avoid introducing neither significant viscous deformation nor the damage to the clips. In this paper, a novel technique to fabricate SU-8 cantilever beam as elastic clamping device in optical fiber holder is proposed. Simulation based on SU-8 material properties indicates that for a 250-μm-long, 50-μm-thick SU-8 beam the clamping force per unit beam width will range from 10 to 100 Newton/m as the deflection increased from 1.4 to 14 μm. This predicted performance is comparable to or even better than that of existing silicon nitride microclips in optical fiber holding application [Bostock et al. in J Micromech Microeng 8(4):343–360, 1998]. By using a two-mask process, we have fabricated free-end cantilever beams as fiber holding clips. In order to have longer beams over V-groove, the slots in the V-groove were introduced, which allow the beams extended deeper into the sloped V-groove walls. The micro alignment module with 250-μm-length cantilever beams as microclips for housing 125-μm-diameter optical fibers has been successfully fabricated using a 300-μm-thick SU-8 photoresist layer by a two-mask UV lithography processes. This approuch offers significant advantages over other techniques with respect to costs of material, simple in equipment, and easy in manufacture. These optical fiber holders with elastic microclips combined with pre-aligned out-of-plane 3D micro lenses make it possible that to build an integrated micro optic system with precise alignment accuracy on a wafer-scale.  相似文献   

9.
This paper describes the design, microfabrication and testing of a pre-aligned array of fiber couplers using direct UV-lithography of SU-8. The fiber coupler array includes an out-of-plane refractive microlens array and two fiberport collimator arrays. With the optical axis of the pixels parallel to the substrate, each pixel of the microlens array can be pre-aligned with the corresponding pixels of the fiberport collimator array as defined by the lithography mask design. This out-of-plane polymer 3D microlens array is pre-aligned with the fiber collimator arrays with no additional adjustment and assembly required, therefore, it helps to dramatically reduce the running cost and improve the alignment quality and coupling efficiency. In addition, the experimental results for the fiber couplers are also presented and analyzed.  相似文献   

10.
Three dimensional (3D) cellular automata (CA) model has been successfully applied in photoresist etching simulation in recent years. In this paper, a simplified 3D CA model is used to simulate the etching process of out-of-plane microlens fabricated on thick SU-8 photoresist. The simulation results are compared with experimental results. This CA model can be developed as a computer-aided design tool to predict the optimum process parameters during the forming of lithographically fabricated microlens.  相似文献   

11.
In this study, the design, realization and measurement results of a novel optofluidic system capable of performing absorbance-based flow cytometric analysis is presented. This miniaturized laboratory platform, fabricated using SU-8 on a silicon substrate, comprises integrated polymer-based waveguides for light guiding and a biconcave cylindrical lens for incident light focusing. The optical structures are detached from the microfluidic sample channel resulting in a significant increase in optical sensitivity. This allows the application of standard solid-state laser and standard silicon-based photodiodes operated by lock-in-amplification resulting in a highly practical and effective detection system. The easy-to-fabricate single-layer microfluidic structure enables independently adjustable 3D hydrodynamic sample focusing to an arbitrary position in the channel. To confirm the fluid dynamics and raytracing simulations and to characterize the system, different sets of microparticles and T-lymphocyte cells (Jurkat cell line) for vital staining were investigated by detecting the extinction (axial light loss) signal. The analytical classification via signal peak height/width demonstrates the high sensitivity and sample discrimination capability of this compact low-cost/low-power microflow cytometer.  相似文献   

12.
Out-of-plane microlenses and microoptical fiber holder are two of the most important components for building an integrated microoptic system with a precise alignment accuracy. In this paper, a simple and convenient method to fabricate these components from SU-8 by using inclined UV lithography in water is proposed. It consists of two perpendicular exposures in SU-8 at ±45°. DI water possesses a low absorption coefficient and a moderate and stable value of refractive index in near UV. Using water, the exposure angle in SU-8 can be increased to 50° from 35° in air necessary to pattern the desired 45° slope of the sidewalls. The principle of the proposed technique and the detailed fabrication process of the microoptic components will be presented. The integratability of the fabricated components was demonstrated by the fabrication of the microoptical fiber holder with a pre-aligned out-of-plane microlens.  相似文献   

13.
This paper presents a micro atomic emission flame spectrometer fabricated by standard micromachining technologies. The main component is a micro burner unit which consumes a minimum of oxyhydrogen to produce a stable miniature flame. The oxyhydrogen is generated in a miniaturized electrolysis cell which can be operated by battery. Via a sample gas injection system, which is integrated into the micro burner unit, gaseous samples are injected into the flame. Liquid samples are atomized by a miniature piezo driven ultrasonic atomizer and injected directly. An optical micro spectrometer system is used to investigate the flame emission. Because of the minute scale of all components and the low consumption of oxyhydrogen, which is generated as-required, rather than stored as in conventional systems, the micro flame spectrometer is easily portable and completely safe in operation. Furthermore, at this early stage detection limits just 1½ magnitude above most sophisticated systems are demonstrated for alkali metals and comparable detection limits appear within reach.  相似文献   

14.
设计了一种基于FPGA的双A/D高精度小信号采集系统.该系统包括测试电流通道和保护电流通道.罗氏线圈输出的感应电动势通过共模扼流圈消除共模干扰后分别送入测试电流通道和保护电流通道,保护电流通道经过信号调理网络后直接送入ADC1中进行转换.为了提高测试电流通道的测量精度,调理后的信号经过PGA网络后送入ADC2中进行转换...  相似文献   

15.
反射式光纤微位移传感器   总被引:6,自引:1,他引:6  
丛红 《传感器与微系统》2003,22(9):70-71,77
依据光纤反射调制原理进行了反射式光纤位移传感检测系统的设计,利用计数器外径千分尺的测头镜面作为反射体和微位移测量工具,详细介绍了微位移测量装置和传感器检测电路。实验表明,在0~2mm范围内检测系统的输出与位移成线性关系,灵敏度为195μV/μm,线性度为±0.5%,适于微位移的测量。  相似文献   

16.
This paper demonstrates the effective coupling between a single-mode fiber (SMF) and an edge emitting laser diode (LD) using a semi-ellipsoid microlens on the SMF endface. The semi-ellipsoid microlens was fabricated using photolithography, thermal reflow, mold electroforming and polydimethylsiloxane (PDMS) injection. UV-curing glue was smeared and exposed to fasten the lens onto the fiber. This microlens allows increasing the fiber spot size and numerical aperture. Low loss, wide misalignment tolerance and low manufacturing cost could be achieved. The optical simulation-software “TracePro” was used to predict the coupling efficiency parameters for the LD to SMF. “Taguchi method” was used for the parameter design concept to improve product quality searching for the optimal lens design. The proposed method facilitates mass production to achieve a high-yield and high-coupling method that is suitable to be used in the commercial fiber transmission industry.  相似文献   

17.
设计了一种用于自组装膜生物传感阵列的高灵敏度信号读出电路,该电路主要包括高灵敏度微阵列生物电流探测单元、积分单元、相关双采样(CDS)单元及输出缓冲单元。电路采用单5 V电源,输入电流为0~50 nA,在0.6μm/level 7 CMOS工艺条件下进行模拟,得到了较为满意的结果。该读出电路与标准CMOS工艺兼容,可实现集成的生物传感阵列。  相似文献   

18.
We report a new two-axis active optical fiber manipulator for on-chip optical manipulation and detection in microfluidic environment. The system comprising of air chambers, fiber channels, controllable moving walls, and membrane structures were fabricated by using microelectromechanical systems technology. By adjusting air pressures to control the deflection of the pneumatic chambers placed orthogonal to and underneath the fiber channels, accurate alignment of a pair of approximately coaxial optical fibers, which was indicated by maximizing fiber-to-fiber optical-coupling measured in real time, has been achieved. A maximum displacement of a buried fiber as large as 13 mum at an applied pressure of 40 lb/in2 for one air chamber has been demonstrated. It was sufficient to accurately align two approximately coaxial optical fibers to maximize the optical coupling efficiency. The maximum coupling efficiency for two single-mode optical fibers facing each other at a distance of 200 mum was measured to be 4.1%. The following features have been successfully demonstrated with this system: 1) stable optical trapping and stretching of a single red blood cell; 2) stable optical trapping of multiple microparticles; 3) optically driven controlled motion of single and multiple microparticles; and 4) integration of a counterpropagating dual-beam trap with single-beam optical tweezers. In addition to optical trapping and manipulation, the proposed device is promising for applications requiring coaxial input/output fibers for in-line optical analysis. Furthermore, it can be easily integrated with other microfluidic devices such as microcapillary electrophoresis channels or microflow cytometers for DNA, protein, and cell analysis.  相似文献   

19.
制备了一种基于MEMS工艺的定向天线。以异性材料为基底的亚波长谐振腔结构有效降低了天线体积。这种天线可以用于要求高能量密度的微系统的能量传送。本文中的天线厚度为1.5mm,可工作于10GHz频段。这使得其易于与微系统集成。文中也给出了仿真及实验的结果,并介绍了天线的加工过程。  相似文献   

20.
Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号