首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
In this study, the device structure of a white tandem organic light‐emitting diode (OLED) was changed to control the emission area and thereby achieve less luminance decay. A long‐life 13.5‐inch 4 K flexible c‐axis‐aligned crystal oxide semiconductor (CAAC‐OS) active‐matrix OLED with less color shift and high resolution was fabricated using this long‐life white OLED, transfer technology, and a CAAC‐OS field‐effect transistor.  相似文献   

2.
Splitting of the mechanical neutral plane is a promising concept for foldable displays because it reduces the folding stress in each layer of the display. We verified the splitting concept experimentally and revealed a linear relation between the relative position of the neutral plane and the logarithm of the adhesive's elastic modulus. As the modulus decreased, the position of the neutral plane approached that of perfect splitting. On the basis of the neutral‐plane splitting concept, we developed 5.5‐inch full high‐definition foldable active matrix organic light‐emitting diode (AMOLED) displays, which endured 150 k inward folding cycles and 150 k outward folding cycles with folding radii of 3 and 5 mm, respectively. This study is expected to improve the flexibility of designing foldable AMOLED displays, enabling better balance of the portability versus practicality trade‐off in mobile displays.  相似文献   

3.
A prototype 13.3‐inch 8k4k 664‐ppi high‐resolution foldable organic light emitting diode display is constructed. C‐axis aligned a‐b‐plane‐anchored crystal In–Ga–Zn oxide field effect transistors designed using a 1.5‐µm rule process are used in the backplane. Each pixel circuit has three transistors and one capacitor, and an external circuit is used to correct pixel current.  相似文献   

4.
In this study, white organic electroluminescent devices with microcavity structures were developed. A flexible high‐resolution active‐matrix organic light‐emitting diode display with low power consumption using red, green, blue, and white sub‐pixels formed by a color‐filter method was fabricated. In addition, a side‐roll touch display was developed in combination with a capacitive flexible touch screen.  相似文献   

5.
Abstract— By using current technology, it is possible to design and fabricate performance‐competitive TV‐sized AMOLED displays. In this paper, the system design considerations are described that lead to the selection of the device architecture (including a stacked white OLED‐emitting unit), the backplane technology [an amorphous Si (a‐Si) backplane with compensation for TFT degradation], and module design (for long life and low cost). The resulting AMOLED displays will meet performance and lifetime requirements, and will be manufacturing cost‐competitive for TV applications. A high‐performance 14‐in. AMOLED display was fabricated by using an in‐line OLED deposition machine to demonstrate some of these approaches. The chosen OLED technologies are scalable to larger glass substrate sizes compatible with existing a‐Si backplane fabs.  相似文献   

6.
Abstract— Organic thin‐film‐transistor (OTFT) technologies have been developed to achieve a flexible backplane for driving full‐color organic light‐emitting diodes (OLEDs) with a resolution of 80 ppi. The full‐color pixel structure can be attained by using a combination of top‐emission OLEDs and fine‐patterned OTFTs. The fine‐patterned OTFTs are integrated by utilizing an organic semiconductor (OSC) separator, which is an insulating wall structure made of an organic insulator. Organic insulators are actively used for the OTFT integration, as well as for the separator, in order to enhance the mechanical flexibility of the OTFT backplane. By using these technologies, active‐matrix OLED (AMOLED) displays can be driven by the developed OTFT backplane even when they are mechanically flexed.  相似文献   

7.
This paper introduces and demonstrates a display that incorporates an organic image sensor formed in the same pixel as organic light‐emitting diodes through side‐by‐side patterning. The potential applications of this display include touch sensing, scanning, and fingerprint identification at any location on the entire display screen, without the necessity of an external module.  相似文献   

8.
An 8‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display driven by oxide thin‐film transistors (TFTs) has been developed. In‐Ga‐Zn‐O (IGZO)‐TFTs used as driving devices were fabricated directly on a plastic film at a low temperature below 200 °C. To form a SiOx layer for use as the gate insulator of the TFTs, direct current pulse sputtering was used for the deposition at a low temperature. The fabricated TFT shows a good transfer characteristic and enough carrier mobility to drive OLED displays with Video Graphic Array pixels. A solution‐processable photo‐sensitive polymer was also used as a passivation layer of the TFTs. Furthermore, a high‐performance phosphorescent OLED was developed as a red‐light‐emitting device. Both lower power consumption and longer lifetime were achieved in the OLED, which used an efficient energy transfer from the host material to the guest material in the emission layer. By assembling these technologies, a flexible AMOLED display was fabricated on the plastic film. We obtained a clear and uniform moving color image on the display.  相似文献   

9.
Abstract— A 15‐in. HD panel employing two‐stacked WOLEDs and color filters for which the color gamut can be as high as 101.2% (CIE1976) and the power consumption is 5.22 W. The WOLEDs exhibit a current efficiency of 61.3 cd/A and a power efficiency of 30 lm/W at 1000 nits and their CIE coordinate is (0.340, 0.334). A 15‐in. RGBW panel was investigated to verify the electrical and optical performance compared to that of a 15‐in. RGB TV made by using FMM technology. The characteristics of the 15‐in. RGBW panel are comparable to those of the 15‐in. RGB panel. Color filters combined with WOLEDs is a possible patterning technology for large‐sized OLED TV, which surpasses the limits of fine‐metal‐mask technology.  相似文献   

10.
A foldable active‐matrix organic light‐emitting diode display capable of enduring very severe folding and environmental impact was obtained using symmetric panel stacking with an innovative design of color filter structure. The display was subjected to in situ folding cycle under an ambient test condition of 60°C/90% relative humidity, and no performance degradation was found for the display and the touch function during and after the test. In addition, 95% coverage of BT.2020 color space was obtained without additional power consumption compared with that of the panel with National Television System Committee (NTSC) color space.  相似文献   

11.
A foldable organic light‐emitting diode display integrating a touch sensor is fabricated. The touch sensor has an in‐cell structure where metal‐mesh sensor electrodes are formed in a counter substrate. It is demonstrated that touch on the entire panel surface, including a bent portion, is detected and that the touch panel operates correctly after 100,000 folding operations with a radius of curvature of 5 mm.  相似文献   

12.
Abstract— In this paper, the current status of flexible OLED (FOLED®) display development will be reviewed, including previous results for passive‐matrix displays on plastic and current progress on active‐matrix displays on steel foil. The displays incorporate high‐efficiency small‐molecule phosphorescence OLED (PHOLE?) technology. The ultimate goal is to develop high‐information‐content high‐performance long‐lived, and large‐area FOLED displays that can be pulled or rolled out from a smaller pen‐like housing. The strategy for achieving this goal will be presented.  相似文献   

13.
Abstract— A novel highly reliable self‐aligned top‐gate oxide‐semiconductor thin‐film transistor (TFT) formed by using the aluminum (Al) reaction method has been developed. This TFT structure has advantages such as small‐sized TFTs, lower mask count, and small parasitic capacitance. The TFT with a 4‐μm channel length exhibited a field‐effect mobility of 21.6 cm2/V‐sec, a threshold voltage of ?1.2 V, and a subthreshold swing of 0.12 V/decade. Highly reliable TFTs were obtained after 300°C annealing without increasing the sheet resistivity of the source/drain region. A 9.9‐in.‐diagonal qHD AMOLED display was demonstrated with self‐aligned top‐gate oxide‐semiconductor TFTs for a low‐cost and ultra‐high‐definition OLED display. Excellent brightness uniformity could be achieved due to small parasitic capacitance.  相似文献   

14.
We developed a high‐performance 3.4‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display with remarkably high resolution using an oxide semiconductor in a backplane, by applying our transfer technology that utilizes metal separation layers. Using this panel, we also fabricated a prototype of a side‐roll display for mobile uses. In these AMOLED displays, a white OLED combined with a color filter was used in order to achieve remarkably high resolution. For the white OLED, a tandem structure in which a phosphorescent emission unit and a fluorescent emission unit are serially connected with an intermediate layer sandwiched between the emission units was employed. Furthermore, revolutionary technologies that enable a reduction in power consumption in both the phosphorescent and fluorescent emission units were introduced to the white tandem OLED.  相似文献   

15.
Abstract— A novel flexible active‐matrix organic light‐emitting‐diode (OLED) display fabricated on planarized stainless—used‐steel substrates with a resolution of 85 dpi in a 4.7‐in. active area has been demonstrated. Amorphous indium—gallium—zinc—oxide thin‐film transistors were used as the backplane for the OLED display with high device performance, high electrical stability, and long lifetime. A full‐color moving image at a frame frequency of 60 Hz was also realized by using a flexible color filter directly patterned on a plastic substrate with a white OLED as the light source.  相似文献   

16.
Abstract— Work on the world's first wrist‐worn communications device built on a flexible, low‐power‐consumption full‐color AMOLED using phosphorescent OLEDs is presented. The device offers the wearer the ability to see high‐information‐content video‐rate information in a thin‐and‐rugged‐form‐factor 4‐in. QVGA display, conformed around a human wrist.  相似文献   

17.
We developed flexible displays using back‐channel‐etched In–Sn–Zn–O (ITZO) thin‐film transistors (TFTs) and air‐stable inverted organic light‐emitting diodes (iOLEDs). The TFTs fabricated on a polyimide film exhibited high mobility (32.9 cm2/Vs) and stability by utilization of a solution‐processed organic passivation layer. ITZO was also used as an electron injection layer (EIL) in the iOLEDs instead of conventional air‐sensitive materials. The iOLED with ITZO as an EIL exhibited higher efficiency and a lower driving voltage than that of conventional iOLEDs. Our approach of the simultaneous formation of ITZO film as both of a channel layer in TFTs and of an EIL in iOLEDs offers simple fabrication process.  相似文献   

18.
High‐mobility and highly reliable self‐aligned top‐gate oxide thin‐film transistor (TFTs) were developed using the aluminum reaction method. Al diffusion to the oxide semiconductor and homogenization of the oxygen concentration in the depth direction after annealing were confirmed by laser‐assisted atom probe tomography. The high mobility of the top‐gate TFT with amorphous indium tin zinc oxide channel was demonstrated to be 32 cm2/V s. A 9.9‐in. diagonal qHD active‐matrix organic light‐emitting diode (AM‐OLED) display was fabricated using a five‐mask backplane process to demonstrate an applicable solution for large‐sized and high‐resolution AM‐OLEDs.  相似文献   

19.
Abstract— Organic light‐emitting‐device (OLED) devices are very promising candidates for flexible‐display applications because of their organic thin‐film configuration and excellent optical and video performance. Recent progress of flexible‐OLED technologies for high‐performance full‐color active‐matrix OLED (AMOLED) displays will be presented and future challenges will be discussed. Specific focus is placed on technology components, including high‐efficiency phosphorescent OLED technology, substrates and backplanes for flexible displays, transparent compound cathode technology, conformal packaging, and the flexibility testing of these devices. Finally, the latest prototype in collaboration with LG. Phillips LCD, a flexible 4‐in. QVGA full‐color AMOLED built on amorphous‐silicon backplane, will be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号