首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microstructure and mechanical properties of a new β high strength Ti–3.5Al–5Mo–6V–3Cr–2Sn–0.5Fe titanium alloy were investigated in this paper. Both the α/β and β solution treatment and subsequent aging at temperatures ranging from 440 °C to 560 °C for 8 h were introduced to investigate the relationship between microstructures and properties. Microstructure observation of α/β solution treatment plus aging condition shows that the grain size is only few microns due to the pinning effect of primary α phase. The β solution treatment leads to coarser β grain size and the least stable matrix. The size and volume fraction of secondary α are very sensitive to temperature and strongly affected the strength of the alloy. When solution treated at 775 °C plus aged at 440 °C, the smallest size (0.028 μm in width) of secondary α and greatest volume fraction (61%) of α resulted in the highest yield strength (1624 MPa). And the yield strength decreased by an average of 103 MPa with every increase of 40 °C due to the increase of volume fraction and decrease of the size of secondary α. In β solution treatment plus aging condition, tensile results shows that the strength if the alloy dramatically decreased by an average of 143 MPa for every increase of 40 °C because of larger size of secondary α phase than α/β solution treated plus aged condition.  相似文献   

2.
The 2D transition metal carbides (MXenes) are increasingly considered among of the most promising 2D nanomaterials, because of their unique properties such as hydrophilic nature, metallic conductivity, large surface-area-to-volume ratio, and active surface functionalities. This has led to their growing utilization in water/wastewater treatment and environmental remediation applications, including water purification membranes, heavy metal removal, capacitive deionization, and bactericidal agents. This account will focus on the key characteristic properties of MXenes such as high metallic/electronic conductivity, and catalytic activity, and their utilization for the electrocatalytic and photocatalytic-based environmental remediation applications. We will also address the key challenges facing MXene-based materials in aqueous media and possible mitigation routs.  相似文献   

3.
Structural and elastic properties of LaN at normal and high pressures are investigated using ab initio calculations based on full-potential linearized augmented plane wave (FP-LAPW) within both local density approximation (LDA) and generalized gradient approximation (GGA). Our results concerning equilibrium lattice parameter and bulk modulus agree well with the available experimental and previous theoretical findings. The transition pressure from NaCl (B1) to CsCl (B2) phase is found to be 31.05 GPa from LDA, and 42.2 GPa from GGA. To the best of our knowledge, the elastic properties for LaN in the B1 structure in the presence of pressure have never been reported so far. The linear pressure coefficients of elastic constants and their related bulk modulus are determined from the pressure dependence of these parameters. Furthermore, the mechanical stability criteria for LaN in B1 phase are found to be fulfilled at normal conditions.  相似文献   

4.
It is a long-standing challenge to search for metallic glasses(MGs)with optimal combinations of glassforming ability(GFA),strength and toughness in the vast compositional space.By taking into account both recently developed ellipse criterion and temperature-based GFA criterion,here we established quantitative correlations among compositions,elastic constants,GFA and mechanical properties of MGs,which enable to predict the GFA,fracture strength and fracture surface simultaneously in advance once the compositions of MGs are determined.Experimental data confirm the validity of this approach in prediction.Finally,a strategy for designing MGs with optimal combinations of strength,toughness and GFA is proposed,which allows for high-throughput discovering glass formers with excellent mechanical properties.  相似文献   

5.
Based on the temperature sensitivity characteristics, high-temperature tensile tests were performed at different temperatures and after different solid solution treatments to investigate the effect of Cr-rich M23C6, Nb-rich MC and the delta phase on the mechanical properties of Inconel 625. The experimental results indicated that the Cr-rich M23C6 carbides and the Nb-rich MC carbides decomposed at 700°C, which could be the reason for resulting tensile strength anomaly that was observed in a narrow temperature range from 650 to 700°C during the tensile tests at different temperatures. For the samples subjected to a prior solid solution treatment, the size of the δ phase was found to increase with the solution treatment temperature, whereas the elongation at fracture decreased.  相似文献   

6.
《材料科学技术学报》2019,35(6):1064-1073
The oxide dispersion strengthened (ODS) steel with the nominal composition of Fe–14Cr–2W–0.3Ti–0.2V–0.07Ta–0.3Y2O3 (wt%) was fabricated by mechanical alloying and hot isostatic pressing (HIP). In order to optimize the relative volume fraction of secondary phases, the as-HIPed ODS steel was annealed at 800 °C, 1000 °C, 1200 °C for 5 h, respectively. The microstructures and different secondary phases of the as-HIPed and annealed ODS samples were identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The tensile properties of all the ODS steels at room temperature were also investigated. The results indicate that annealing is an effective way to control the microstructure and the integral secondary phases. The annealing process promotes the dissolution of M23C6 particles, thus promoting the precipitation of TiC. No obvious coarsening of Y2Ti2O7 nanoparticles can be observed during annealing. The tensile results indicate that the annealed ODS sample with the optimized secondary phases and high density possesses the best mechanical properties.  相似文献   

7.
The new compositions of ternary Cu–Zr–Ti bulk metallic glasses are predicted by integrating calculation of vacancy formation energy, mixing enthalpy and configuration entropy of the alloys based on thermodynamics of glass formers. The monolithic amorphous rods of 3 mm diameter have been successfully fabricated, and characterized by X-ray diffractometry, differential scanning calorimetry, scanning electronic microscopy, transmission electronic microscopy and compression tests. The results show that the designed alloys possess good glass forming ability and excellent mechanical properties. The mechanical properties of the samples can be effectively improved by regulating their composition. The monolithic amorphous rod of Cu50Zr44Ti6 exhibits a high fracture strength of 1855 MPa and excellent plastic deformation up to ∼7.4%. The formation and propagation of shear bands in samples are also investigated. The enhancement of plastic deformation is mainly contributed to multiplication and intersection of shear bands.  相似文献   

8.
The aim of this paper is investigation of microstructure and property relationship in aluminum-HSLA steel and aluminum-dual phase steel bimetals fabricated by explosive welding technique. Dual phase steel was produced by intercritical annealing and water quenching from 1.45Mn-0.2Si-0.186C HSLA steel. Hardness, tensile shear strength, tensile strength, toughness and microstructure of explosively welded aluminum-HSLA steel and aluminum-dual phase steel were evaluated. Both bimetals have a straight bonding interface. It was also seen that plastic deformation of dual phase steel was higher than HSLA steel near interfaces of bimetals. The hardness was increased near the bond interface of bimetals. Tensile and tensile shear strength tests showed that aluminum-dual phase steel is superior than aluminum-HSLA steel. Also, impact toughness of aluminum-dual phase steel was found significantly higher than that of aluminum-HSLA steel.  相似文献   

9.
Studying hydrogen behavior in alloys and the mechanical properties of alloys are essential to various practical uses,such as separation membranes,as well as hydrogen embrittlement protection.In order to further develop the non-Pd-alloy membranes used in hydrogen separation,the mechanical,thermal properties of V14NiM(M= Al,Fe,Si,Ti,Zn)and hydrogen solubility and diffusion behaviors of V-based ternary alloys were studied by first principles calculation.The results indicated that the hydrogen solution energies of V-Ni-M are greater than pure vanadium.And the mono-vacancy in pure vanadium can capture 6 H atoms while the V-Ni-M alloys can only capture 5 H atoms.Therefore,the V-Ni-M alloys exhibit lower solubility of hydrogen and higher brittleness resistance to embrittlement compared with pure vanadium.And the diffusion coefficients of V-Ni-M alloys are smaller than that of pure vanadium thanks to smaller hydrogen solubility.The hydrogen solubility and hydrogen permeability can maintain relatively balanced.The study of mechanical properties suggests that the V-Ni-Ti has the best resistance to deformation and pure vanadium has the best ductility.Moreover,V-Ni-Si alloy has the smallest thermal expansion coefficient in the temperature range of 473-723 K,which is the temperature of hydrogen separation,indicating that V-Ni-Si is the best for hydrogen separation according to thermal properties.  相似文献   

10.
In this paper six different local loading processes were proposed to study the effects of local loading conditions (temperature, deformation degree, loading pass, heats, cooling modes and heat treatment) on the microstructure and mechanical properties of TA15 titanium alloy workpieces including room and high temperature tensile properties, impact property, fracture toughness and high temperature duration property.It is found that it is better to finish the local loading forming in one heating time, if multi-fire forging needed the optimal forging technique as follows: adopting conventional forging (950 °C) at first and then following near-beta forging to control the proportion of the equiaxed primary α phase and the transformed β phase, allocating deformation degree of each loading pass rationally and using WQ cooling mode. Thus the workpiece with good compositive mechanical properties can be obtained.  相似文献   

11.
Poor corrosion resistance is a serious drawback of Mg alloys, restricting their practical applications. Coating is one of the effective techniques for improvement in the poor corrosion resistance. In this paper, the coating processes for Mg alloys so far developed are reviewed. Among several processes, the coating processes based on mechanical energy, including metal forming, are attractive because the corrosion resistance and formability of Mg alloys are simultaneously improved.  相似文献   

12.
H13 tool steel powder was clad on copper alloy substrate both directly and using 41C stainless steel (high Ni steel) powder as a buffer layer by direct metal deposition (DMD). Cu-steel bimetallic die casting and injection molding tools are of high interest for reduction of cycle time by efficient heat extraction due to high thermal conductivity of copper. The mechanical properties of these bimetallic structures were investigated in terms of bond strength, impact energy and fracture toughness. The bond interfaces of these claddings showed porous and crack free transition regions. The bond strength was higher in the directly clad H13 tool steel compared to the H13 tool steel clad with 41C stainless steel as buffer layer. The fracture morphology in tensile test specimens showed ductile dimple fracture. Presence of necking just below the interface depicted the softening of substrate in heat affected zone (HAZ) during cladding. The Charpy impact energy is little higher in the 41C stainless steel buffered specimens compared to the directly clad H13 tool steel specimens but the fracture toughness results showed reduction of fracture toughness in the 41C stainless steel buffered specimens due to the low strength in the tensile test. However the fracture toughness value was in the ductile region for both deposits.  相似文献   

13.
Brittleness is a bottleneck hindering the applications of fruitful functional properties of Ni-Mn-based multiferroic alloys.Recently,experimental studies on B alloying shed new light on this issue.However,the knowledge related to B alloying is limited until now.More importantly,the mechanism of the improved ductility,which is intrinsically related to the chemical bond that is difficult to reveal by routine experiments,is still unclear.In this context,by first-principles calculations,the impact and the correlated mechanism of B alloying were systemically studied by investigating four alloying systems,i.e.,(Ni2-xBx)MnGa,Ni2(Mn1-xBx)Ga,Ni2Mn(Ga1-xBx) and (Ni2MnGa)1-xBx.Results show that B prefers the direct occupation manner when it replaces Ni,Mn and Ga.For interstitial doping,B tends to locate at octahedral rather than tetrahedral interstice.Calculations show that the replacement of B for Ga can effectively improve (reduce) the inherent ductility (inherent strength) due to the weaker covalent strength of Ni(Mn)-B compared with Ni(Mn)-Ga.In contrast,B staying at octahedral interstice will lead to the formation of new chemical bonds between Ni(Mn) and B,bringing about a significantly improved strength and a greatly reduced ductility.Upon the substitutions for Ni and Mn,they affect both the inherent ductility and strength insignificantly.For phase transition,the replacement of B for Ga tends to destabilize the austenite,which can be understood in the picture of the band Jahn-Teller effect.Besides,the substitution for Ga would not lead to an obvious reduction of magnetization.  相似文献   

14.
The use of gangue, cementitious materials, and water mixed to make cemented gangue backfill material (CGBM) can achieve solid waste recycling while reducing environmental problems caused by its accumulation. In this paper, the fractal dimension of particle size distribution (PSD) and the confining pressure were investigated on the compressive strength, elastic modulus, stress–strain behavior, dilatancy deformation, and failure mode of CGBM using uniaxial compression, conventional triaxial compression, and microscopic scanning tests. The mechanism of the PSD fractal dimension on the mechanical properties of CGBM was revealed from a microscopic perspective. The results demonstrate that the compressive strength and elastic modulus of CGBM are quadratic polynomial and positively linearly related to the PSD fractal dimension and confining pressure respectively, with the PSD fractal dimension characterizing the maximum compressive strength of CGBM ranging between 2.4150 and 2.6084. The volume strain variation of CGBM diminishes as the PSD fractal dimension grows and increases dramatically when the confining pressure rises. The PSD fractal dimension has a quadratic polynomial relationship with both the cohesive force and the internal friction angle of CGBM. A reasonable PSD fractal dimension can optimize the microstructure of CGBM, reduce the distribution of defects such as microcracks and micropores, and enable hydration products to effectively fill the defects, guaranteeing that the CGBM has sufficient load-bearing capacity.  相似文献   

15.
The mechanical properties of refractory high entropy alloys(RHEAs) strongly depend on their phase structures. In this work, the phase stability of a BCC TiNbTa0.5ZrAl0.5 refractory high entropy alloy subjected to thermomechanical processing was evaluated, and the effects of phase decomposition on room/high temperature mechanical properties were quantitatively studied. It was found that, the thermomechanical processing at 800℃and 1200℃ leads to phase decomposition in the TiNbTa0.5ZrAl0.5 alloy. The phase decomposition is caused by the rapid rising of free energy of the primary BCC phase. The effect of the precipitates on room temperature strength is determined by the competition between the increasing in precipitation strengthening and the decreasing in solid solution strengthening. But at high temperatures(800-1200℃), the phase decomposition causes significant reduction in strength, mainly due to the grain boundary sliding and the decreasing in solid solution strengthening.  相似文献   

16.
Cold metal transfer (CMT) welding has been successfully used to weld dissimilar metals widely. However, a few investigations were carried out on the lap welding of commercially pure titanium TA2 to pure copper T2 with ERCuNiAl copper wire by CMT technique. In this paper, the affected mechanism of lapped location between the two metals on the microstructure and tensile shear strength of joints was revealed. The results indicated that satisfactory lapped joints between commercially pure titanium TA2 and pure copper T2 could be achieved by CMT welding method. A layer of intermetallic compounds (IMCs), i.e. Ti2Cu, TiCu and AlCu2Ti presented in titanium-weld interface, and the weld metal was composed of α-Cu solid solution and Ti–Cu–Al–Ni–Fe multi-phase. The two joints had almost same tensile shear strength, 192.5–197.5 N/mm, and fractured in the heat affected zone (HAZ) of Cu with plastic fracture mode during tensile shear tests.  相似文献   

17.
The microstructure evolutions and the mechanical properties of the 25Cr-20Ni austenitic stainless steel weld metals with different Nb contents were investigated during the long term aging treatment at 700~?C.M_(23)C_6,Nb(C,N),α-Cr phase and Nb-nitride phase(Z phase)were observed in the microstructures of the aged weld metals.The results showed that theα-Cr phase precipitated in the interdendritic regions of the weld metals after being exposed to~ 700?C for 500 h and the element Nb accelerated the precipitation of theα-Cr phase significantly.The density of theα-Cr phase decreased with the increase of the distance away from the primary Nb(C,N).Additionally,theα-Cr phase showed a crystallographic relationship with the austenitic matrix,■.It was observed that the Z phase precipitated in the periphery of the Nb(C,N)and may replace the Nb(C,N)after long term exposure to high temperature.The transformation of the Nb(C,N)into Z phase suggested that the Z phase had a higher stability than the Nb(C,N)par~ticles at 700?C for long term aging.The tensile strength of the Nb-bearing weld metal showed a continuous decrease at the initial stage of the aging treatment and then went up slightly with the prolonged aging time.However,the elongations and the impact energies of the weld metals decreased monotonously with the increase of the aging time.  相似文献   

18.
Two grades of commercial purity (CP) titanium (grades 2 and 4) were processed using equal-channel angular extrusion (ECAE) at 300 °C and 450 °C, respectively. The processing temperatures were the minimum temperatures at which eight pass ECAE could be performed without any shear-localization. The coarse-grained (CG) microstructures of as-received grade-2 and grade-4 CP-Ti, with average grain sizes of 110 μm and 70 μm, respectively, were refined down to sub-micron levels with a mean grain size of about 300 nm for both grades after 8 ECAE passes. The ultrafine-grained (UFG) microstructures led to substantial enhancement in strength for both grades. The grade-2 sample showed a more than two fold increase in yield strength (σy), from 307 MPa for the as-received one to about 620 MPa for the processed samples. The grade-4 CP-Ti exhibited a relatively smaller increase in strength due to the higher processing temperature, and it showed about 50% increase in σy after eight pass ECAE, from 531 to 758 MPa. These strength levels were obtained with high ductility levels of 21% and 25% for UFG grade-2 and grade-4 Ti, respectively. These improvements in mechanical properties are attributed to the substantially refined grain size and increased dislocation density. Grade-4 Ti is stronger than grade-2 because of the higher oxygen content. The higher ductility and significantly higher strain hardening capability of UFG grade-4 Ti, in spite of the similar grain size and microstructure with UFG grade-2 Ti, is also due to the higher impurity content, probably resulting in a higher dislocation storage capability during room temperature deformation, and thus, higher strain hardening capacity. Such properties make UFG grade-4 Ti comparable to the commercial Ti-6Al-4V alloy for biomedical applications without negative effects of the alloying elements on biocompatibility.  相似文献   

19.
采用基于密度泛函理论的第一性原理方法,计算了γ-TiAl和过渡金属Zr替位掺杂γ-TiAl形成的Ti8Al7Zr和Ti7ZrAl8体系的几何结构、总能量、结合能、声子谱和热学参量。通过对几何结构和结合能的计算分析揭示Zr替位掺杂γ-TiAl能够改善材料的稳定性和延性。能带结构和态密度表明Ti8Al7Zr和Ti7ZrAl8体系具有金属导电性。计算的声子谱显示Ti7ZrAl8体系具有很好的稳定性。计算结果显示Ti8Al7Zr和Ti7ZrAl8体系均具有较大而且稳定的高温热容量和热导率,比γ-TiAl有显著的改善。Ti8Al7Zr和Ti7ZrAl8体系的较大的热容量和热导率都有利于γ-TiAl基合金的技术应用。  相似文献   

20.
CuZrAlTiNi High entropy alloy (HEA) coating was synthesized on T10 substrate using mechanical alloying (MA) and vacuum hot pressing sintering (VHPS) technique. The MA results show that the final product of as-milled powders is amorphous phase. The obtained coating sintered at 950 °C is compact and about 0.9 mm in thickness. It is composed of a couple of face-centered cubic (FCC), one body-centered cubic (BCC) solid solutions and AlNi2Zr phase. The interface strength between coating and substrate is 355.5 MPa measured by three point bending test. Compared with T10 substrate, the corrosion resistance of CuZrAlTiNi HEA coating is enhanced greatly in the seawater solution, which is indicated by the higher corrosion potential, wider passivation region, and secondary passivation. The average microhardness of the coating reaches 943 HV0.2, and is about 3.5 times higher than the substrate, which is mainly ascribed to the uniformly dispersed nano-size precipitates, phase boundary strengthening and solid solution strengthening. Moreover, the wear resistance of the coating is slightly improved in comparison with the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号