首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new topology optimization scheme called the projection-based ground structure method (P-GSM) is proposed for linear and nonlinear topology optimization designs. For linear design, compared to traditional GSM which are limited to designing slender members, the P-GSM can effectively resolve this limitation and generate functionally graded lattice structures. For additive manufacturing-oriented design, the manufacturing abilities are the key factors to constrain the feasible design space, for example, minimum length and geometry complexity. Conventional density-based method, where each element works as a variable, always results in complex geometry with large number of small intricate features, while these small features are often not manufacturable even by 3D printing and lose its geometric accuracy after postprocessing. The proposed P-GSM is an effective method for controlling geometric complexity and minimum length for optimal design, while it is capable of designing self-supporting structures naturally. In optimization progress, some bars may be disconnected from each other (floating in the air). For buckling-induced design, this issue becomes critical due to severe mesh distortion in the void space caused by disconnection between members, while P-GSM has ability to overcome this issue. To demonstrate the effectiveness of proposed method, three different design problems ranging from compliance optimization to buckling-induced mechanism design are presented and discussed in details.  相似文献   

2.
Recently, the approximate methods based on continuous models have been developed to perform structural analysis of composite lattice structures due to their relative simplicity and computational efficiency. This paper defines the modified effective stiffness considering the directionally dependent mechanical properties to an intersection of ribs and mode shape function of a composite lattice cylinder. It subsequently presents an approximate method based on the continuous model of conducting a buckling analysis of the composite lattice cylinder with various boundary conditions under uniform compression. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, a parametric analysis is performed to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice cylinder based on the present method. Finally, we apply the present method to perform the optimization of a composite lattice cylinder for a high-speed vehicle to minimize the mass. Consequently, it is concluded that the present method is very suitable to optimization of composite lattice cylinders due to their relative simplicity and computational efficiency.  相似文献   

3.
Reliability-based design optimization (RBDO) has been used for optimizing engineering systems with uncertainties in design variables and system parameters. RBDO involves reliability analysis, which requires a large amount of computational effort, so it is important to select an efficient method for reliability analysis. Of the many methods for reliability analysis, a moment method, which is called the fourth moment method, is known to be less expensive for moderate size problems and requires neither iteration nor the computation of derivatives. Despite these advantages, previous research on RBDO has been mainly based on the first-order reliability method and relatively little attention has been paid to moment-based RBDO. This article considers difficulties in implementing the moment method into RBDO; they are solved using a kriging metamodel with an active constraint strategy. Three numerical examples are tested and the results show that the proposed method is efficient and accurate.  相似文献   

4.
A generalized optimization problem in which design space is also a design to be found is defined and a numerical implementation method is proposed. In conventional optimization, only a portion of structural parameters is designated as design variables while the remaining set of other parameters related to the design space are often taken for granted. A design space is specified by the number of design variables, and the layout or configuration. To solve this type of design space problems, a simple initial design space is selected and gradually improved while the usual design variables are being optimized. To make the design space evolve into a better one, one may increase the number of design variables, but, in this transition, there are discontinuities in the objective and constraint functions. Accordingly, the sensitivity analysis methods based on continuity will not apply to this discontinuous stage. To overcome the difficulties, a numerical continuation scheme is proposed based on a new concept of a pivot phase design space. Two new categories of structural optimization problems are formulated and concrete examples shown. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
在基于仿真模型的工程设计优化中,采用高精度、高成本的分析模型会导致计算量大,采用低精度、低成本的分析模型会导致设计优化结果的可信度低,难以满足实际工程的要求。为了有效平衡高精度与低成本之间的矛盾关系,通过建立序贯层次Kriging模型融合高/低精度数据,采用大量低成本、低精度的样本点反映高精度分析模型的变化趋势,并采用少量高成本、高精度的样本点对低精度分析模型进行校正,以实现对优化目标的高精度预测。为了避免层次Kriging模型误差对优化结果的影响,将层次Kriging模型与遗传算法相结合,根据6σ设计准则计算每一代最优解的预测区间,具有较大预测区间的当前最优解即为新的高精度样本点。同时,在优化过程中序贯更新层次Kriging模型,提高最优解附近的层次Kriging模型的预测精度,从而保证设计结果的可靠性。将所提出的方法应用于微型飞行器机身结构的设计优化中,以验证该方法的有效性和优越性。采用具有不同单元数的网格模型分别作为低精度分析模型和高精度分析模型,利用最优拉丁超立方设计分别选取60个低精度样本点和20个高精度样本点建立初始层次Kriging模型,采用本文方法求解并与直接采用高精度仿真模型求解的结果进行比较。结果表明,所提出的方法能够有效利用高/低精度样本点处的信息,建立高精度的层次Kriging模型;本文方法仅需要少量的计算成本就能求得近似最优解,有效提高了设计效率,为类似的结构设计优化问题提供了参考。  相似文献   

6.
 提出一种基于灵敏度的多目标鲁棒优化方法。针对各维设计变量存在扰动的情况,在原约束多目标优化模型上,附加偏差目标函数,并采用最差估计法对约束条件进行鲁棒可行性调整。采用全局敏度方程方法来计算目标函数和约束函数对设计变量的敏度,进而采用Pareto遗传算法搜索约束多目标优化问题的非劣解集,设计者可以根据不同的设计准则从中选择合适的设计点。将上述方法用于飞机总体参数优化设计,并与采用常规优化方法所得的优化结果进行了分析和比较。  相似文献   

7.
Internal structural layouts and component sizes of aircraft wing structures have a significant impact on aircraft performance such as aeroelastic characteristics and mass. This work presents an approach to achieve simultaneous partial topology and sizing optimization of a three-dimensional wing-box structure. A multi-objective optimization problem is assigned to optimize lift effectiveness, buckling factor and mass of a structure. Design constraints include divergence and flutter speeds, buckling factor and stresses. The topology and sizing design variables for wing internal components are based on a ground element approach. The design problem is solved by multi-objective population-based incremental learning (MOPBIL). The Pareto optimum results lead to unconventional wing structures that are superior to their conventional counterparts.  相似文献   

8.
为提高飞行器的适坠性能,对二维三轴编织复合材料机身隔框的冲击动力学特性进行研究。基于连续介质损伤力学建立了机身隔框在冲击载荷作用下的有限元模型。该模型根据不可逆热力学理论并结合Weibull分布建立损伤扩张准则,采用Hashin失效准则确定损伤阈值函数。在迭代过程中,剪应力与正应力相互耦合,且分别考虑材料在纵向和横向的损伤破坏。在此基础上研究了材料参数变化对机身隔框冲击动力学性能的影响,并对各种情况下的瞬态动力学特征和能量吸收特性进行对比分析。数值结果表明该有限元模型能够准确求解编织复合材料机身隔框的非线性瞬态动力学问题,载荷峰值和吸收的能量分别与试验结果相差1.5%和4.7%,且纵向的弹性模量和压缩强度等材料参数对机身隔框的冲击动力学响应影响较大。  相似文献   

9.
The aim of this article is to provide an effective method to generate the ground structure in truss topology optimization. The core of this method is to place nodal points for the ground structure at the intersection of the first and third principal stress trajectories, which are obtained by solving the equivalent static problem in the design domain with a homogeneous isotropic material property. It is applicable to generate the ground structure for arbitrary regular and irregular geometric design domains. The proposed method is tested on some benchmark examples in truss topology optimization. The optimization model is a standard linear programming problem based on plastic design and solved by the interior point algorithm. Compared with other methods, the proposed method may use a well-defined ground structure with fewer nodes and bars, resulting in faster solution convergence, which shows it to be efficient.  相似文献   

10.
为实现加工中心动静态性能不低于优化前性能,达到整机重量最轻的要求,本文提出了一种复合优化方法来研究多变量、多约束和多目标的数控加工中心优化设计。采用有限元分析和实验模态测试方法分析各大件动态性能,并验证了有限元模型的精确性。然后以该有限元模型为基础进行静态分析,得出各大件的最大变形及应力等。以柔度为目标,采用变密度法拓扑优化设计立柱结构的外形框架;以固有频率为目标,基于元结构的可适应性动态优化方法设计加工中心的筋板结构;以固有频率和质量为目标,基于响应面法的尺寸优化确定各结构的最优尺寸。最后将优化后的各大件进行整机装配,分析校核整机动静态性能。分析结果表明,优化后的整机在保证加工中心动静态性能的条件下,整机质量从12749kg减少到12127kg,减重达到4.9%,达到了整机的优化设计要求,说明该方法具有较高的精度和较强的工程实用性。  相似文献   

11.
This article presents a methodology and process for a combined wing configuration partial topology and structure size optimization. It is aimed at achieving a minimum structural weight by optimizing the structure layout and structural component size simultaneously. This design optimization process contains two types of design variables and hence was divided into two sub-problems. One is structure layout topology to obtain an optimal number and location of spars with discrete integer design variables. Another is component size optimization with continuous design variables in the structure FE model. A multi city-layer ant colony optimization (MCLACO) method is proposed and applied to the topology sub-problem. A gradient based optimization method (GBOM) built in the MSC.NASTRAN SOL-200 module was employed in the component size optimization sub-problem. For each selected layout of the wing structure, a size optimization process is performed to obtain the optimum result and feedback to the layout topology process. The numerical example shows that the proposed MCLACO method and a combination with the GBOM are effective for solving such a wing structure optimization problem. The results also indicate that significant structural weight saving can be achieved.  相似文献   

12.
This article investigates multi-objective optimization under reliability constraints with applications in vehicle structural design. To improve computational efficiency, an improved multi-objective system reliability-based design optimization (MOSRBDO) method is developed, and used to explore the lightweight and high-performance design of a concept car body under uncertainty. A parametric model knowledge base is established, followed by the construction of a fully parametric concept car body of a multi-purpose vehicle (FPCCB-MPV) based on the knowledge base. The structural shape, gauge and topology optimization are then designed on the basis of FPCCB-MPV. The numerical implementation of MOSRBDO employs the double-loop method with design optimization in the outer loop and system reliability analysis in the inner loop. Multi-objective particle swarm optimization is used as the outer loop optimization solver. An improved multi-modal radial-based importance sampling (MRBIS) method is utilized as the system reliability solver for multi-constraint analysis in the inner loop. The accuracy and efficiency of the MRBIS method are demonstrated on three widely used test problems. In conclusion, MOSRBDO has been successfully applied for the design of a full parametric concept car body. The results show that the improved MOSRBDO method is more effective and efficient than the traditional MOSRBDO while achieving the same accuracy, and that the optimized body-in-white structure signifies a noticeable improvement from the baseline model.  相似文献   

13.
The paper presents a gradient‐based topology optimization formulation that allows to solve acoustic–structure (vibro‐acoustic) interaction problems without explicit boundary interface representation. In acoustic–structure interaction problems, the pressure and displacement fields are governed by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface‐coupling integrals, however, such a formulation does not allow for free material re‐distribution in connection with topology optimization schemes since the boundaries are not explicitly given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u /p‐formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several two‐dimensional acoustic–structure problems are optimized in order to verify the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
对具有吸能子地板的全复合材料机身结构进行了垂直向7.9m/s的抗坠毁数值模拟,得到平均加速度、速度及撞击载荷值等动态冲击参数,考虑采用不同的评价方法来评估其抗坠毁特性。并对全复合材料机身结构进行分块设计,考虑在冲击过程中起关键作用的底部结构中加入吸能泡沫,最后利用专业的瞬态动力学软件对有限元设计模型进行了冲击模拟,并与测试结果进行了比较,结果满足抗坠毁设计相应规范要求。计算得到的平均加速度不超过13g,其相对误差不大于11%,撞击载荷最大不超过6kN,坠毁平均负加速度持续时间不超过0.03s,结果较合理。利用本模型可以指导直升机的抗坠毁设计。  相似文献   

15.
This work presents a generalized substructuring-based topology optimization method for the design hierarchical lattice structures to maximize the first eigenvalue. In this method, the macrostructure is assumed to be composed of substructures with a common artificial lattice geometry pattern. And two different yet connected scales are considered through a lattice geometry feature parameter. The feature parameter, which can control the material distribution of the substructure, determines the relative density of corresponding substructure. Each substructure is condensed into a super-element to obtain the associated density-related matrices. A surrogate model using cubic spline interpolation has been particularly built to map the density to stiffness and mass matrices of condensed super-elements. The derivatives of super-element matrices to the associated densities can be evaluated efficiently and accurately. Here, an augmented penalized density for this surrogate model is introduced. And the conventional optimality criteria method is selected as updating method of the density design variables. Numerical examples under two lattice patterns of substructures are shown to validate the correctness and superiority of this substructure-based topology optimization method.  相似文献   

16.
This article proposes a new method for hybrid reliability-based design optimization under random and interval uncertainties (HRBDO-RI). In this method, Monte Carlo simulation (MCS) is employed to estimate the upper bound of failure probability, and stochastic sensitivity analysis (SSA) is extended to calculate the sensitivity information of failure probability in HRBDO-RI. Due to a large number of samples involved in MCS and SSA, Kriging metamodels are constructed to substitute true constraints. To avoid unnecessary computational cost on Kriging metamodel construction, a new screening criterion based on the coefficient of variation of failure probability is developed to judge active constraints in HRBDO-RI. Then a projection-outline-based active learning Kriging is achieved by sequentially select update points around the projection outlines on the limit-state surfaces of active constraints. Furthermore, the prediction uncertainty of Kriging metamodel is quantified and considered in the termination of Kriging update. Several examples, including a piezoelectric energy harvester design, are presented to test the accuracy and efficiency of the proposed method for HRBDO-RI.  相似文献   

17.
In this study, a multimaterial topology optimization method using a single variable is proposed by combining the solid isotropic material with penalization method and the reaction-diffusion equation. Unlike ordinary multimaterial optimization, which requires several variables depending on the number of material types, this method intends to represent various materials as one variable. The proposed method combines two special functions in the sensitivity analysis of the objective function to converge the design variable into prespecified density values defined for each of the multimaterials. The composition constraint based on a normal distribution function is also introduced to estimate the distribution of each target density value in a single variable. It enables density exchange between multiple materials by increasing or decreasing the amount of a specific material. The proposed method is applied to structural and electromagnetic problems to verify its effectiveness, and its usefulness is also confirmed from the viewpoint of cost and computation time.  相似文献   

18.
工程结构优化设计发展综述   总被引:44,自引:5,他引:44       下载免费PDF全文
 着重评述了工程结构优化设计研究领域从最初的尺寸优化发展到形状优化、拓扑优化的基本历程及其相关特点,并对优化设计选用的优化算法进行了归类,提出了这一领域今后仍然有待于发展的主要方面.  相似文献   

19.
考虑一体化成型工艺制备的复合材料点阵夹芯结构及其不确定性,采用区间向量实现不确定参数定量化,建立复合材料点阵夹芯结构平压性能区间分析模型.考虑结构功能状态判断的模糊性,分别在不考虑设计容差与考虑设计容差情形下,建立了不确定平压载荷作用下含区间参数模糊可靠性分析与优化模型.研究结果表明:材料参数及结构参数不确定性,特别是设计容差对复合材料点阵夹芯结构平压性能影响明显,因此在工程优化中不仅需要充分考虑材料参数与外部载荷等不确定性,而且需要充分重视传统不确定设计方法中未计及的设计容差的影响.本研究实现了理论成果与工程应用的有机结合,为工程领域复合材料点阵夹芯结构平压性能分析与优化提供有效理论方法.  相似文献   

20.
摘 要 研究几何和物理参数均为随机变量的平面连续体结构在结构基频约束下的拓扑优化设计问题。以结构总质量均值极小化为目标函数,以结构的形状拓扑信息为设计变量,以结构基频概率可靠性指标为约束条件,构建了随机结构拓扑优化设计数学模型。利用代数综合法,导出了随机参数结构动力响应的均值和均方差的计算表达式。采用渐进结构优化的求解策略与方法,通过两个算例验证了文中模型及求解方法的合理性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号