首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of inflammation in sporadic and familial Parkinson’s disease   总被引:1,自引:1,他引:0  
The etiology of Parkinson’s disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Interestingly, many genetic variants, which have been linked to familial forms of PD or identified as strong risk factors, also play a critical role in modulating inflammatory responses. There has been considerable debate in the field as to whether inflammation is a driving force in neurodegeneration or simply represents a response to neuronal death. One emerging hypothesis is that inflammation plays a critical role in the early phases of neurodegeneration. In this review, we will discuss emerging aspects of both innate and adaptive immunity in the context of the pathogenesis of PD. We will highlight recent data from genetic and functional studies that strongly support the theory that genetic susceptibility plays an important role in modulating immune pathways and inflammatory reactions, which may precede and initiate neuronal dysfunction and subsequent neurodegeneration. A detailed understanding of such cellular and molecular inflammatory pathways is crucial to uncover pathogenic mechanisms linking sporadic and hereditary PD and devise tailored neuroprotective interventions.  相似文献   

3.
Parkinson’s disease (PD), the second most common neurodegenerative disorder, affects 1–2 % of humans aged 60 years and older. The diagnosis of PD is based on motor symptoms such as bradykinesia, rigidity, tremor, and postural instability associated with the striatal dopaminergic deficit that is linked to neurodegenerative processes in the substantia nigra (SN). In the past, cellular replacement strategies have been evaluated for their potential to alleviate these symptoms. Adult neurogenesis, the generation of new neurons within two proliferative niches in the adult brain, is being intensively studied as one potential mode for cell-based therapies. The subventricular zone provides new neurons for the olfactory bulb functionally contributing to olfaction. The subgranular zone of the hippocampus produces new granule neurons for the dentate gyrus, required for memory formation and proper processing of anxiety provoking stimuli. Recent years have revealed that PD is associated with non-motor symptoms such as hyposmia, anhedonia, lack of novelty seeking behavior, depression, and anxiety that are not directly associated with neurodegenerative processes in the SN. This broad spectrum of non-motor symptoms may partly rely on proper olfactorial processing and hippocampal function. Therefore, it is conceivable that some non-motor deficits in PD are related to defective adult neurogenesis. Accordingly, in animal models and postmortem studies of PD, adult neurogenesis is severely affected, although the exact mechanisms and effects of these changes are not yet fully understood or are under debate due to conflicting results. Here, we review the current concepts related to the dynamic interplay between endogenous cellular plasticity and PD-associated pathology.  相似文献   

4.
5.
6.
The field of Parkinsons disease pathogenesis is rapidly evolving from the one of a monolithic and obscure entity into the one of a complex scenario with several known molecular players. The ongoing systematic exploration of the genome holds great promise for the identification of the genetic factors conferring susceptibility to the common non-Mendelian forms of this disease. However, most of the progress of the last 5 years has come from the successful mapping and cloning of genes responsible for rare Mendelian variants of Parkinsons disease. These discoveries are providing tremendous help in understanding the molecular mechanisms of this devastating disease. Here we review the genetics of the monogenic forms of Parkinsons disease. Moreover, we focus on the mechanisms of disease caused by -synuclein and parkin mutations, and the implications of this growing body of knowledge for understanding the pathogenesis of the common forms of the disease. Received 10 March 2004; received after revision 26 April 2004; accepted 29 April 2004  相似文献   

7.
Parkinson’s disease (PD) is characterized by the death of dopaminergic neurons and the presence of Lewy bodies in the substantia nigra pars compacta. The mechanisms involved in the death of neurons as well as the role of Lewy bodies in the pathogenesis of the disease are still unclear. Lewy bodies are made of aggregated proteins, in which α-synuclein represents their major component. α-Synuclein interacts with synphilin-1, a protein that is also present in Lewy bodies. When expressed in cells, synphilin-1 forms inclusions together with α-synuclein that resemble Lewy bodies. Synphilin-1 is ubiquitylated by various E3 ubiquitin-ligases, such as SIAH, parkin and dorfin. Ubiquitylation of synphilin-1 by SIAH is essential for its aggregation into inclusions. We recently identified a new synphilin-1 isoform, synphilin-1A, that is toxic to neurons, aggregation-prone and accumulates in detergent-insoluble fractions of brains from α-synucleinopathy patients. Synphilin-1A inclusions recruit both α-synuclein and synphilin-1. Aggregation of synphilin-1 and synphilin-1A seems to be protective to cells. We now discuss several aspects of the neurobiology and pathology of synphilin-1 isoforms, focusing on possible implications for PD. Received 26 July 2007; received after revision 19 September 2007; accepted 15 October 2007  相似文献   

8.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopamine (DA) neurons through apoptotic, inflammatory and oxidative stress mechanisms. The octadecaneuropeptide (ODN) is a diazepam-binding inhibitor (DBI)-derived peptide, expressed by astrocytes, which protects neurons against oxidative cell damages and apoptosis in an in vitro model of PD. The present study reveals that a single intracerebroventricular injection of 10 ng ODN 1 h after the last administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) prevented the degeneration of DA neurons induced by the toxin in the substantia nigra pars compacta of mice, 7 days after treatment. ODN-mediated neuroprotection was associated with a reduction of the number of glial fibrillary acidic protein-positive reactive astrocytes and a strong inhibition of the expression of pro-inflammatory genes such as interleukins 1β and 6, and tumor necrosis factor-α. Moreover, ODN blocked the inhibition of the anti-apoptotic gene Bcl-2, and the stimulation of the pro-apoptotic genes Bax and caspase-3, induced by MPTP in the substantia nigra pars compacta. ODN also decreased or even in some cases abolished MPTP-induced oxidative damages, overproduction of reactive oxygen species and accumulation of lipid oxidation products in DA neurons. Furthermore, DBI knockout mice appeared to be more vulnerable than wild-type animals to MPTP neurotoxicity. Taken together, these results show that the gliopeptide ODN exerts a potent neuroprotective effect against MPTP-induced degeneration of nigrostriatal DA neurons in mice, through mechanisms involving downregulation of neuroinflammatory, oxidative and apoptotic processes. ODN may, thus, reduce neuronal damages in PD and other cerebral injuries involving oxidative neurodegeneration.  相似文献   

9.
10.
Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson’s disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.  相似文献   

11.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder implicitly marked by the substantia nigra dopaminergic neuron degeneration and explicitly characterized by the motor and non-motor symptom complexes. Apart from the nigrostriatal dopamine depletion, the immune and endocrine study findings are also frequently reported, which, in fact, have helped to broaden the symptom spectrum and better explain the pathogenesis and progression of PD. Nevertheless, based on the neural, immune, and endocrine findings presented above, it is still difficult to fully recapitulate the pathophysiologic process of PD. Therefore, here, in this review, we have proposed the neuroimmunoendocrine (NIE) modulatory network in PD, aiming to achieve a more comprehensive interpretation of the pathogenesis and progression of this disease. As a matter of fact, in addition to the classical motor symptoms, NIE modulatory network can also underlie the non-motor symptoms such as gastrointestinal, neuropsychiatric, circadian rhythm, and sleep disorders in PD. Moreover, the dopamine (DA)–melatonin imbalance in the retino-diencephalic/mesencephalic-pineal axis also provides an alternative explanation for the motor complications in the process of DA replacement therapy. In conclusion, the NIE network can be expected to deepen our understanding and facilitate the multi-dimensional management and therapy of PD in future clinical practice.  相似文献   

12.
13.
Protein misfolding under stressful environmental conditions cause several cellular problems owing to the disturbed cellular protein homeostasis, which may further lead to neurological disorders like Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyloid lateral sclerosis and Huntington disease (HD). The presence of cellular defense mechanisms like molecular chaperones and proteasomal degradation systems prevent protein misfolding and aggregation. Molecular chaperones plays primary role in preventing protein misfolding by mediating proper native folding, unfolding and refolding of the polypeptides along with vast number of cellular functions. In past few years, the understanding of molecular chaperone mechanisms has been expanded enormously although implementation to prevent protein aggregation diseases is still deficient. We in this review evaluated major classes of molecular chaperones and their mechanisms relevant for preventing protein aggregation, specific case of α-synuclein aggregation. We also evaluate the molecular chaperone function as a novel therapeutic approach and the chaperone inhibitors or activators as small molecular drug targets.  相似文献   

14.
15.
Deposition of amyloid β-protein (Aβ) in the brain is an early and invariant neuropathological feature of Alzheimer’s disease (AD). The current search for anti-AD drugs is mainly focused on modification of the process of accumulation of Aβ in the brain. Here, we review four anti-amyloidogenic strategies: (i) reduction of Aβ production, which has mainly been approached with secretase inhibition, (ii) promotion of the Aβ degrading catabolic pathway, including an Aβ degrading enzyme, neprilysin, (iii) immunotherapy for Aβ and (iv) inhibition of Aβ aggregation. We have reported that AD patients have a favorable molecular environment for Aβ aggregation and that various compounds, such as polyphenols, interfere with Aβ aggregation and destabilize preformed Aβ fibrils. Received 21 December 2005; received after revision 14 February 2006; accepted 29 March 2006  相似文献   

16.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, leading to a variety of motor and non-motor symptoms. Interestingly, non-motor symptoms often appear a decade or more before the first signs of motor symptoms. Some of these non-motor symptoms are remarkably similar to those observed in cases of impaired neurogenesis and several PD-related genes have been shown to play a role in embryonic or adult neurogenesis. Indeed, animal models deficient in Nurr1, Pitx3, SNCA and PINK1 display deregulated embryonic neurogenesis and LRRK2 and VPS35 have been implicated in neuronal development-related processes such as Wnt/β-catenin signaling and neurite outgrowth. Moreover, adult neurogenesis is affected in both PD patients and PD animal models and is regulated by dopamine and dopaminergic (DA) receptors, by chronic neuroinflammation, such as that observed in PD, and by differential expression of wild-type or mutant forms of PD-related genes. Indeed, an increasing number of in vivo studies demonstrate a role for SNCA and LRRK2 in adult neurogenesis and in the generation and maintenance of DA neurons. Finally, the roles of PD-related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and DJ-1 have been studied in NSCs, progenitor cells and induced pluripotent stem cells, demonstrating a role for some of these genes in stem/progenitor cell proliferation and maintenance. Together, these studies strongly suggest a link between deregulated neurogenesis and the onset and progression of PD and present strong evidence that, in addition to a neurodegenerative disorder, PD can also be regarded as a developmental disorder.  相似文献   

17.
Paget’s disease of bone is a chronic focal skeletal disorder characterized by increased bone resorption by the osteoclasts. Paramyxoviral gene products have been detected in pagetic osteoclasts. Paget’s disease is an autosomal dominant trait with genetic heterogeneity. Several mutations in the ubiquitin-associated (UBA) domain of sequestosome 1 (SQSTM1/p62) have been identified in patients with Paget’s disease. Similarly, mutations in the valosin-containing protein (VCP) gene have been shown to cause inclusion body myopathy associated with Paget’s disease of bone and frontotemporal dementia. In addition, gene polymorphisms and enhanced levels of cytokine/growth factors associated with Paget’s disease have been identified. However, the etiologic factors in Paget’s disease remain elusive. A cause and effect relationship for the paramyxoviral infection and SQSTM1/ p62 gene mutations responsible for pagetic osteoclast development and disease severity are unclear. This article will highlight the etiologic factors involved in the pathogenesis of Paget’s disease. Received 6 October 2005; received after revision 2 November 2005; accepted 24 November 2005  相似文献   

18.
Common features between diabetes mellitus and Alzheimer’s disease   总被引:1,自引:1,他引:0  
Epidemiological studies establish a link between Type 2 diabetes (T2DM) and Alzheimer’s disease (AD), both leading causes of morbidity and mortality in the elderly. These diseases also share clinical and biochemical features suggesting common pathogenic mechanisms. Specifically, both are amyloidoses as they are characterized by fibrillar protein aggregates – amylin in T2DM pancreatic islets, and β-amyloid (Aβ) and neurofibrillary tangles (NFTs) in AD brain. Amylin aggregation is associated with pancreatic β-cell loss, and Aβ and NFT formation with neuronal cell loss. We discuss the possibility that amylin and Aβ exert their toxicity by similar mechanisms, with components of the pathocascades shared, and that therapies based on amyloidogenic properties are beneficial for both T2DM and AD. Received 27 January 2009; received after revision 17 February 2009; accepted 23 February 2009  相似文献   

19.
Monocytes and their pathophysiological role in Crohn’s disease   总被引:1,自引:1,他引:0  
Our immune system shows a stringent dichotomy, on the one hand displaying tolerance towards commensal bacteria, but on the other hand vigorously combating pathogens. Under normal conditions the balance between flora tolerance and active immunity is maintained via a plethora of dynamic feedback mechanisms. If, however, the balancing act goes faulty, an inappropriate immune reaction towards an otherwise harmless intestinal flora causes disease, Crohn’s disease for example. Recent developments in the immunology and genetics of mucosal diseases suggest that monocytes and their derivative cells play an important role in the pathophysiology of Crohn’s disease. In our review, we summarize the recent studies to discuss the dual function of monocytes - on the one hand the impaired monocyte function initiating Crohn’s disease, and on the other hand the overactivation of monocytes and adaptive immunity maintaining the disease. With a view to developing new therapies, both aspects of monocyte functions need to be taken into account. Received 1 June 2008; received after revision 24 July 2008; accepted 13 August 2008  相似文献   

20.
Historically, Nelson Goodman’s paradox involving the predicates ‘grue’ and ‘bleen’ has been taken to furnish a serious blow to Carl Hempel’s theory of confirmation in particular and to purely formal theories of confirmation in general. In this paper, I argue that Goodman’s paradox is no more serious of a threat to Hempel’s theory of confirmation than is Hempel’s own paradox of the ravens. I proceed by developing a suggestion from R. D. Rosenkrantz into an argument for the conclusion that these paradoxes are, in fact, equivalent. My argument, if successful, is of both historical and philosophical interest. Goodman himself maintained that Hempel’s theory of confirmation was capable of handling the paradox of the ravens. And Hempel eventually conceded that Goodman’s paradox showed that there could be no adequate, purely syntactical theory of confirmation. The conclusion of my argument entails, by contrast, that Hempel’s theory of confirmation is incapable of handling Goodman’s paradox if and only if it is incapable of handling the paradox of the ravens. It also entails that for any adequate solution to one of these paradoxes, there is a corresponding and equally adequate solution to the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号