首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT) epitaxial thin films were grown on SrRuO3 (SRO) coated (001)‐oriented SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different oxygen partial pressures in the processing of deposition. The effects of oxygen partial pressure on structure, cation stoichiometry, surface morphology, leakage current behavior, ferroelectric, and piezoelectric properties were investigated. Both the lattice parameters and (Ba + Ca)/(Ti + Zr) cation ratio decrease with increasing oxygen partial pressure. The BCZT thin film with the ideal cation stoichiometry was obtained under 200 mTorr, giving rise to a remanent polarization Pr = 14.5 μC/cm2 and effective piezoelectric coefficient d33 = 96 ± 5 pm/V.  相似文献   

2.
Inorganic perovskite [KNbO3]0.9[BaNi0.5Nb0.5O3‐σ]0.1 (KBNNO) ferroelectric thin films with narrow band gap (1.83 eV) and high room‐temperature remnant polarization (Pr = 0.54 μC/cm2) was grown successfully on the Pt(111)/Ti/SiO2/Si(100) substrates by pulsed laser deposition. Ferroelectric solar cells with a basic structure of ITO/KBNNO/Pt were further prepared based on these thin films, which exhibited obvious external‐poling dependent photovoltaic effects. When the devices were negatively poled, the short‐circuit current and open‐circuit voltage were both significantly higher than those of the devices poled positively. This is attributed to enhanced charge separation under the depolarization field induced by the negative poling, which is superimposed with the built‐in field induced by the Schottky barriers at the interfaces between KBNNO and the two electrodes. When a poling voltage of ‐1 V was applied, the device showed a short‐circuit current as high as 27.3 μA/cm2, which was by two orders of magnitude larger than that of the KBNNO thick‐film (20 μm) devices reported previously. This work may inspire further exploration for lead‐free inorganic perovskite ferroelectric photovoltaic devices.  相似文献   

3.
Bi0.5Na0.5TiO3‐based incipient ferroelectrics with pseudocubic structure generally show weak ferro‐/piezoelectricity but giant field‐induced strains. It is difficult to artificially and smoothly improve the electrical property based on conventional chemical doping or substituting without changing the crystal structure and suppressing the strain. Here, by introducing the semiconductor ZnO into the lead‐free incipient ferroelectric ((Bi0.5(Na0.84K0.16)0.5)0.96Sr0.04)(Ti0.975Nb0.025)O3 (BNT–2.5Nb) to form 0‐3 type composites (BNT–2.5Nb:xZnO), we experimentally illustrate that the resistance and ferro‐/piezoelectric properties can be enhanced significantly with an unchanged crystal structure and only slightly suppressed strains. For example, the remanent polarization and piezoelectric coefficient increase from 4.6 μC/cm2 and 8 pC/N for x=0 to 9.0 μC/cm2 and 31 pC/N for x=0.3. At the same time, the total strain only decreases from 0.140% for x=0 to 0.108% for x=0.3, whereas the negative strain increases from ?0.003% for x=0 to ?0.010% for x=0.3. And the thermal stability of d33 is enhanced. The corresponding mechanism is attributed to that ZnO can form a local field, preventing the depolarization of field induced macroscopic ferroelectric domains. Our results not only provide a feasible way to tune electrical properties of BNT‐based incipient ferroelectrics, but also may stimulate further work on artificially structured high‐performance ferroelectrics.  相似文献   

4.
Lead-free ferroelectric Pr3+-doped (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x?=?0–0.5) (hereafter abbreviated as Pr-NBT-xSTO) thin films were prepared on Pt/Ti/SiO2/Si and fused silica substrates by a chemical solution deposition method combined with a rapid thermal annealing process at 700?°C, and their structural phase transition, dielectric, ferroelectric, and photoluminescent properties were investigated as a function of STO content. Raman analysis shows that with increasing STO content, the phase structures evolve from rhombohedral phase to coexistence of rhombohedral and tetragonal phases (i.e. morphotropic phase boundary), and then to tetragonal phase. The structural phase transition behavior has been well confirmed by temperature- and frequency- dependent dielectric measurements. Meanwhile, the variation in photoluminescence intensity of Pr3+ ions with different STO content in the NBT-xSTO thin films also indicates that there exists a clear structural phase transition when the film composition is close to the morphotropic phase boundary. Superior dielectric and ferroelectric properties are obtained in the Pr-NBT-0.24STO thin films due to the formation of morphotropic phase boundary. Our study suggests that Pr-NBT-xSTO thin films be promising multifunctional materials for optoelectronic device applications.  相似文献   

5.
(100)C‐oriented Na0.5Bi0.5‐xSmxTiO3 (NBST) lead‐free ferroelectric thin films were prepared on Pt/Ti/SiO2/Si substrates by chemical solution deposition method, and their microstructural, dielectric, ferroelectric, and photoluminescent properties were studied. X‐ray diffraction and scanning electron microscopy analysis indicated that both the grain size and (100)C orientation degree of NBST thin films were decreased by doping Sm3+ ions. Raman spectra showed that structural symmetry of NBST thin films decreased at low Sm3+ doping concentration and then increased at high doping concentration of Sm3+ ions. An appropriate amount of Sm3+ dopants was confirmed to enhance dielectric and ferroelectric properties of the NBST thin films. Among all the compositions, the Na0.5Bi0.492Sm0.008TiO3 thin film exhibited the largest remnant polarization (2Pr) of 27.3 μC/cm2 and high dielectric constant of 1068, as well as a low dielectric loss of 0.04. Temperature‐ and frequency‐dependent dielectric characteristics illustrated the relaxor ferroelectric behavior of Na0.5Bi0.492Sm0.008TiO3 thin film. Meanwhile, the Na0.5Bi0.492Sm0.008TiO3 thin film also showed optimal orange‐red emission at 600 nm, which is originating from the 4G5/24H7/2 transition of Sm3+ ions.  相似文献   

6.
Bulk ceramic 72.5 mol%(Bi0.5Na0.5)TiO3–22.5 mol%(Bi0.5K0.5)TiO3–5 mol%Bi(Mg0.5Ti0.5)O3 (BNT–BKT–BMgT) has previously been reported to show a large high‐field piezoelectric coefficient (d33* = 570 pm/V). In this work, the same composition was synthesized in thin film embodiments on platinized silicon substrates via chemical solution deposition. Overdoping of volatile cations in the precursor solutions was necessary to achieve phase‐pure perovskite. An annealing temperature of 700°C resulted in good ferroelectric properties (Pmax = 52 μC/cm2 and Pr = 12 μC/cm2). Quantitative compositional analysis of films annealed at 650°C and 700°C indicated that near ideal atomic ratios were achieved. Compositional fluctuations observed through the film thickness were in good agreement with the existence of voids formed between successive spin‐cast layers, as observed with electron microscopy. Bipolar and unipolar strain measurements were performed via double laser beam interferometry and a high effective piezoelectric coefficient (d33,f) of approximately 75 pm/V was obtained.  相似文献   

7.
In this work, in order to investigate the effect of TiO2 layer on the microstructure and piezoelectric properties of (Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) thin films, TiO2 layer was inserted at the interface between the NKBT thin film and substrate and on both sides of the NKBT, i.e., at the interface and on the top of the NKBT thin film. NKBT composited films with alternative TiO2 layer were deposited on Pt/Ti/SiO2/Si substrate by aqueous sol‐gel method. X‐ray diffraction observation found that the degree of (100) preferred orientation strengthened with TiO2 layers added, especially on both sides of NKBT thin film. The TiO2/NKBT/TiO2 composited film with both TiO2 layer of 40 nm thickness exhibited a remnant polarization value Pr of 22.6 μc/cm3 and effective piezoelectric coefficient of approximate 77 pm/V, which are much larger than that of the single‐layered NKBT thin film with Pr value of 13.7 μc/cm3 and of 56 pm/V, respectively. According to the investigation of the temperature‐dependent ferroelectric property, it was found that the Pr gradually increased, and in the meantime the coercive voltage gradually moved to higher voltage with testing temperature varied from 20 to ?150°C. Besides, applied voltage dependence of leakage current density measurement indicated that the TiO2 layer would effectively lower the leakage current of the films, and the TiO2/NKBT/TiO2 composited film both TiO2 layer of 40 nm exhibited the lowest leakage current.  相似文献   

8.
0.96(Na0.5K0.5)(Nb1?xSbx)‐0.04SrZrO3 ceramics with 0.0≤x≤0.06 were well sintered at 1060°C for 6 hours without a secondary phase. Orthorhombic‐tetragonal transition temperature (TO‐T) and Curie temperature (TC) decreased with the addition of Sb2O5. The decrease in TC was considerable compared to that in TO‐T, and thus the tetragonal phase zone disappeared when x exceeded 0.03. Therefore, a broad peak for orthorhombic‐pseudocubic transition as opposed to that for orthorhombic‐tetragonal transition appeared at 115°C‐78.2°C for specimens with 0.04≤x≤0.06. An orthorhombic structure was observed for specimens with x≤0.03. However, the polymorphic phase boundary structure containing orthorhombic and pseudocubic structures was formed for the specimens 0.04≤x≤0.06. Furthermore, a specimen with x=0.055 exhibited a large piezoelectric strain constant of 325 pC/N, indicating that the coexistence of orthorhombic and pseudocubic structures could improve the piezoelectric properties of (Na0.5K0.5)NbO3‐based lead‐free piezoelectric ceramics.  相似文献   

9.
CuO‐added 0.96(Na0.5K0.5)(Nb1‐xSbx)O3‐0.04SrTiO3 ceramics sintered at the low temperature of 960°C for 10 hours showed dense microstructures and high relative densities. The specimens with 0.0 ≤  x ≤ 0.04 had orthorhombic‐tetragonal polymorphic phase boundary (PPB) structure. Tetragonal‐pseudocubic PPB structure was observed in specimens with 0.05 ≤  x ≤ 0.07, while the specimen with x = 0.08 has a pseudocubic structure. The structural variation in the specimens is explained by the decreases in the orthorhombic‐tetragonal transition temperature and Curie temperature with the addition of Sb5+ ions. The specimens with 0.05 ≤  x ≤ 0.07, which have tetragonal‐pseudocubic PPB structure, had large electric field‐induced strains of 0.14%‐0.016%. Moreover, these specimens also showed increased d33 values between 280 pC/N and 358 pC/N. In particular, the specimen with x = 0.055 showed particularly enhanced piezoelectric properties: d33 of 358 pC/N, kp of 0.45, and the electric field‐induced strain of 0.16% at 4.5 kV/mm.  相似文献   

10.
The analysis of the functional properties (ferroelectric, dielectric, and piezoelectric) of chemical solution deposited thin films of the lead‐free (Bi0.5Na0.5)1?xBaxTiO3 (BNBT) solid solution prepared from solution precursors with and without Na+ and Bi3+ excesses has been performed in this work. At room temperature a nonergodic relaxor ferroelectric state has been found. The switched polarization of the films is not stable at room temperature, poor remnant polarization, associated with an enhancement of the induced domains randomization produced by the films constraints. The depolarization temperature for the switched polarization allowed us to build up a tentative phase diagram for these BNBT films. Both the better functional properties and the agreement of the depolarization temperature with the freezing temperature of the relaxor Volger–Fulcher behavior permit to locate the center of the morphotropic phase boundary region close to x = 0.055 in the stoichiometric films and x = 0.10 for the films with Na+ and Bi3+ excesses. Based on these results, the possible applications of these films are discussed.  相似文献   

11.
The validity of Mn element on 0.93(Bi0.5Na0.5)TiO3‐0.07Ba(Ti0.945Zr0.055)O3 ceramics (BNT‐BZT‐xMn) is certified by doping. On account of multiple effects introduced by Mn, the appropriate Mn content facilitates property improvement effectively. Compared with pure BNT‐BZT, d33 of the component x = 0.25 increases about 8% up to 187 pC/N and Qm of the component x = 1 increases about 84% up to 197. Thermally stimulated depolarization currents (TSDC) measurement reveals Mn additive is helpful to pyroelectric properties as well. The Mn‐doped component x = 0.125 exhibits better pyroelectric performance at room temperature. Corresponding pyroelectric coefficient and the figures of merit reach up to 0.061 μC/(cm2 °C), Fi=217 pm/V, Fν = 0.023 m2/C, and Fd = 12.6 μPa?1/2, respectively, even superior to lead‐based ceramics. Similar pyroelectric advantage is also observed in the component x = 0.5 near depolarization temperature Td. Mn doping has slight harmful influence on the ferroelectric‐to‐relaxor transition temperature TF?R, as well as Td, but hardly shows restriction on application. These results confirm Mn doping is an available strategy to improve BNT‐based ceramics. Therefore, Mn‐doped BNT‐BZT ceramics will be excellent candidates in area of high‐power piezoelectric application and pyroelectric detectors.  相似文献   

12.
Lead‐free sodium bismuth titanate–aluminate bismuth [0.97(Na0.5Bi0.5)TiO3–0.03BiAlO3] solid‐solution films deposited on (100) Pt/TiO2/SiO2/Si substrates by a sol–gel process were pyrolyzed and annealed at different temperatures. The film annealed at 725°C with a pyrolysis temperature of 410°C exhibited the optimal electrical properties and excellent piezoelectric properties, with a remanent polarization 2Pr of 38 μC/cm2 and a leakage current density of 10?7–10?6 A/cm2 (E < 200 kV/cm). The values of the dielectric constant and dissipation factor at 100 kHz were 422 and 0.039, respectively. The piezoelectric coefficient of the film after poling at 168 kV/cm was found to be 57 pm/V, making the BNT‐BA films a viable lead‐free alternative to the lead‐based materials in such as biosensors and ultrasonic transducers.  相似文献   

13.
Lead‐free 0.985[(0.94?x)Bi0.5Na0.5TiO3–0.06BaTiO3xSrTiO3]–0.015LiNbO3 [(BNT–BT–xST)–LN, x=0‐0.05] piezoelectric ceramics were prepared using a conventional solid‐state reaction method. It was found that the long‐range ferroelectric order in the unmodified (BNT–BT)–LN ceramic was disrupted and transformed into the ergodic relaxor phase with the ST substitution, which was well demonstrated by the dramatic decrease in remnant polarization (Pr), coercive field (Ec), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the ferroelectric and piezoelectric properties was accompanied by a significant increase in the usable strain response. The critical composition (BNT–BT–0.03ST)–LN exhibited a maximum unipolar strain of ~0.44% and corresponding normalized strain, Smax/Emax of ~880 pm/V under a moderate field of 50 kV/cm at room temperature. This giant strain was associated with the coexistence of the ferroelectric and ergodic relaxor phases, which should be mainly attributed to the reversible electric‐field‐induced transition between the ergodic relaxor and ferroelectric phases. Furthermore, the large field‐induced strain showed relatively good temperature stability; the Smax/Emax was as high as ~490 pm/V even at 120°C. These findings indicated that the (BNT–BT–xST)–LN system would be a suitable environmental‐friendly candidate for actuator applications.  相似文献   

14.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

15.
We investigated the ferroelectric switching dynamics as well as the multiferroic and piezoelectric properties of highly a-oriented epitaxial Bi5Ti3FeO15 (BTFO) thin films on Nb-doped SrTiO3 single crystal substrates. The BTFO thin films favored highly a-oriented crystallinity because c-oriented crystallinity decreased under deposition conditions in which substrate temperature and thin film deposition rate were simultaneously lowered. The highly a-oriented epitaxial BTFO thin films showed the best ferroelectric properties, whereas the highly c-oriented epitaxial BTFO thin films showed the best ferromagnetic properties. In particular, the BTFO thin films in which a- and c-oriented crystallinity were properly mixed showed the best piezoelectric properties.  相似文献   

16.
An ultra‐wide temperature stable ceramic system based on (1?x) [0.94(0.75Bi0.5Na0.5TiO3?0.25NaNbO3)?0.06BaTiO3]?xCaZrO3 (CZ100x) is developed for capacitor application in this study. All samples exhibit characteristics of pseudocubic structures in XRD patterns. With CaZrO3 addition, the coupling effect of polar nanoregions (PNRs) is weakening, leading to greatly improved temperature stability of dielectric properties. Among all samples, the most attractive properties are obtained in the composition of CZ10 at <15% variation in dielectric permittivity spanning from ?55°C to 400°C and lower than 0.02 of dielectric loss of between ?60°C and 300°C, accompanied by high DC resistivity (107 Ω m at 300°C, calculated by fitting Jonscher's power law). Furthermore, tentative multilayer ceramic capacitors (MLCCs) composed of CZ10 dielectric and Ag:Pd (70:30) internal electrode layers were fabricated by tape casting and cofiring processes. Temperature‐stable dielectric property in formation of MLCC was successfully realized, with small ΔC/C25°C (<15%) and loss factor (≤ 0.02) between ?55°C and 340°C. Meanwhile, CZ10‐based MLCC showed temperature‐insensitive energy storage density of 0.31?0.35 J/cm3 and high‐energy efficiency of above 77% at 120 kV/cm in the range of ?55 to 175°C. All of these exhibit wonderful temperature‐stable dielectric properties and indicate the promising future of CZ10 dielectric as high‐temperature ceramic capacitors.  相似文献   

17.
The crystal structure, electromechanical properties, and electrocaloric effect (ECE) in novel lead‐free (Bi0.5K0.5)TiO3‐La(Mg0.5Ti0.5)O3 ceramics were investigated. A morphotropic phase boundary (MPB) between the tetragonal and pseudocubic phase was found at x = 0.01‐0.02. In addition, the relaxor properties were enhanced with increasing the La(Mg0.5Ti0.5)O3 content. In situ high‐temperature X‐ray diffraction patterns and Raman spectra were characterized to elucidate the phase transition behavior. The enhanced ECE (ΔT = 1.19 K) and piezoelectric coefficient (d33 = 103 pC/N) were obtained for x = 0.01 at room temperature. Meanwhile, the temperature stability of the ECE was considered to be related to the high depolarization temperature and relaxor characteristics of the Bi0.5K0.5TiO3‐based ceramics. The above results suggest that the piezoelectric and ECE properties can be simultaneously enhanced by establishing an MPB. These results also demonstrate the great potential of the studied systems for solid‐state cooling applications and piezoelectric‐based devices.  相似文献   

18.
Continued reduction in length scales associated with many ferroelectric film‐based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate‐lead titanate (70PMN‐30PT) thin films were studied over the thickness range of 100‐350 nm for the relative contributions to property thickness dependence from interfacial and grain‐boundary low permittivity layers. Epitaxial PMN‐PT films were grown on SrRuO3/(001)SrTiO3, while polycrystalline films with {001}‐Lotgering factors >0.96 were grown on Pt/TiO2/SiO2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at high fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC‐biased and temperature‐dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness‐dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.  相似文献   

19.
The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.  相似文献   

20.
Multiferroic ceramics were prepared and characterized in (1?x)BiFeO3x(0.5CaTiO3–0.5SmFeO3) system by a standard solid‐state reaction process. The structure evolution was investigated by X‐ray diffraction and Raman spectrum analyses. The refinement results confirmed the different phase assemblages with varying amounts of polar rhombohedral R3c and nonpolar orthorhombic Pbnm as a function of the substitution content. In the compositions range of 0.2≤x≤0.5, polar R3c and nonpolar Pbnm coexisted, which was referred to polar‐to‐nonpolar morphotropic phase boundary (MPB). According to the dielectric and DSC analysis results, the ceramics with x≤0.2 changed to diffused ferroelectric, and the ferroelectric properties were enhanced significantly. Two dielectric relaxations were detected in the temperature range of 200‐300 K and 500‐700 K, respectively. The high‐temperature dielectric relaxation was attributed to the grain‐boundary effects. While the low temperature dielectric relaxation obtained in the samples with x=0.3‐0.5 was related to the charge transfer between Fe2+ and Fe3+. The magnetic hysteresis loops measured at different temperature indicated the enhanced magnetic properties in the present ceramics, which could be attributed to the suppressed cycloidal spin magnetic structure by Ti ions. In addition, the rare‐earth Sm spin moments might also affect the magnetic properties at relatively lower temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号