首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K(Nb1?xMnx)O3 (KN1?xMx) ceramics with 0.005 ≤ x ≤ 0.015 were sintered at 1020°C through a normal sintering process without the formation of a liquid phase. They exhibited double polarization versus electric field (P–E) hysteresis and sprout‐shaped strain versus electric field (S–E) curves owing to the presence of a defect dipole (PD), which was formed between the acceptor Mn3+ ion and the oxygen vacancy. Moreover, the aging process was not required to develop the PD. The KN1?xMx ceramics exhibited a large strain of ~0.2% at 6.0 kV/mm. For the KN0.985M0.015 ceramic, this large strain was maintained after 104 cycles of an electric field of 6.0 kV/mm. This ceramic also maintained a double hysteresis curve at 200°C. Therefore, the KN0.985M0.015 ceramic has a large electric field‐induced strain, along with good thermal and fatigue properties for multilayer piezoelectric actuators.  相似文献   

2.
This work investigated the effect of MnO2 addition on the phase structure, microstructure, and electrical properties of AgSbO3‐modified (Li,K,Na)(Nb,Ta)O3 (abbreviated as LKNNT‐AS) lead‐free piezoelectric ceramics with an optimized composition endowed with a state of two‐phase coexistence. A small amount (0.1 wt%) of MnO2 can significantly further enhance the piezoelectric property of LKNNT‐AS ceramics, whose piezoelectric constant d33 and converse piezoelectric coefficient d33* as well as planar electromechanical coupling factor kp reach 363 pC/N, 543 pm/V, and 0.49, respectively. The temperature stability of piezoelectricity in MnO2‐modified LKNNT‐AS samples also improved, which is associated with the more uniform and better thermally stable ferroelectric domains that were revealed by piezoresponse force microscopy.  相似文献   

3.
During high‐temperature crystal growth, lattice defects will inevitably form inside piezoelectric materials, which can be a hindrance for performance optimization. Through appropriate atmosphere control during sintering, defect levels inside the piezoelectric material can be regulated. Herein, CaZrO3‐modified (K, Na)NbO3‐based lead‐free piezoelectric ceramics with a nominal composition of 0.95(Na0.49K0.49Li0.02)(Nb0.8Ta0.2)O3‐0.05CaZrO3 are produced by sintering in an oxygen‐rich atmosphere. Compared with an air‐sintered sample, the piezoelectric constant of the oxygen‐sintered sample has greatly improved 15% up to 390 pC/N, which is comparable to commercial lead‐based counterparts. In addition, the planar electromechanical coupling factor kp is enhanced from 0.46 to 0.52. A qualitative model related to defect engineering is proposed to support the experimental observations. Our results indicate the feasibility of purposely optimizing the piezoelectric performance by sintering atmosphere control.  相似文献   

4.
Donor doping is commonly applied for softening of the piezoelectric and dielectric properties and facilitation of polarization switching in the ubiquitous Pb(Zr,Ti)O3 [PZT] ceramics. The origin of the donor‐dopant effects is not entirely clear. (Pb,Ba)ZrO3 [PBZ] is a related ferroelectric material, its perovskite A‐site being partially occupied by the larger Ba+2 cation, less prone to evaporation than Pb+2, and the B‐site is occupied entirely by the valency‐stable Zr+4. Here we report on our studies of Nb+5 doping effects in (Pb,Ba)ZrO3. Similarly, to past observations on La+3 and Nb+5 doped PZT, we find a strong reduction in relative density of PBZ when the doping is <0.5 atomic %. This is accompanied by lattice parameter reduction, enhanced PbO loss, smaller grain size and deterioration of dielectric, piezoelectric and polarization switching properties, the latter being opposite of expected softening effect. All those observations can be interpreted in terms of the Nb entering A‐site at small concentrations. This is supported by ab‐inito calculations and analysis of the possible defect reaction equations. The structure and microstructure of PBZ with Nb>0.2% are consistent with Nb+5 entering the B‐site and softening effects are observed. The study supports the scenario of hardening due to domain walls pinning by VPbVO divacancies and softening upon decrease in their concentration.  相似文献   

5.
Dense homogeneous fabric composed from continuous bead‐free erbium‐doped sodium potassium niobate (Er:NKN) 100 μm long and 100‐200 nm in diameter nanofibers was sintered by sol‐gel calcination assisted electrospinning technique. X‐ray diffraction revealed preferential cube‐on‐cube [001]‐directional growth of fibers containing predominantly monoclinic Na0.35K0.65NbO3‐type phase and significantly less of tetragonal NbO2, cubic Er2O3, and monoclinic ErNbO4 phases. Er doping with the concentration of 2 at.% provides readily detectable room‐temperature broad‐band photoluminescence (PL) centered at λPL = 0.55 and 0.98 μm being pumped, respectively, with 532 and 785 nm lasers. Impedance spectroscopy and static electrical tests revealed ferroelectric properties, electric field induced resistance switching and strong rectification effect in nanoporous sandwich Au/Er:NKN/Pt capacitive cell. Memristor‐type current‐voltage (IV) characteristics originate from the electrochemical migration of oxygen vacancies at the n‐type NKN oxide/high work function Pt cathode junction interface.  相似文献   

6.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

7.
In this study, the influence of Li substitution on the piezoelectric performance of lead‐free K0.5Na0.5NbO3 (KNN)‐epoxy composites is explored. KNN piezoceramic particles modified with 0‐12 mol% of Li are prepared via a double calcination technique, resulting in a perovskite particulate which transitions from an orthorhombic to tetragonal crystal structure between 6 and 9 mol% of Li, and contains a minor nonperovskite second phase from 6 mol%. A cuboid particle morphology is evident in all cases, though tetragonal KNN‐based particles have formed with serrated edges and fractures. The particles are dispersed at 10 vol% in an epoxy matrix to develop both random and dielectrophoretically structured (K,Na,Li)NbO3‐epoxy composites. The dielectric constant of the composites appears almost independent of Li content, while the piezoelectric charge constant of structured composites peaks before the polymorphic phase transition, at 3 mol% of Li. The peak in performance can be attributed to the increased primary particle size of the composition in combination with its single phase orthorhombic crystal structure. The enhancement of the energy harvesting figure of merit, derived from substituting 3 mol% of Li in the KNN particulate, makes these composites an interesting choice for flexible energy generators.  相似文献   

8.
(1?x)Bi1/2Na1/2TiO3xPbMg1/3Nb2/3O3[(1?x)BNT‐xPMN] ceramics have been fabricated via a conventional solid‐state method for compositions x ≤ 0.3. The microstructure, phase structure, ferroelectric, and dielectric properties of ceramics were systematically studied as high‐temperature capacitor materials. XRD pattern certified perovskite phase with no secondary phase in all compositions. As PMN concentration increased, the phase of (1?x)BNT‐xPMN ceramics transformed from ferroelectric to relaxor gradually at room temperature, with prominent enhancement of dielectric temperature stability. For the composition x = 0.2, the temperature coefficient of capacitance (TCC) was <15% in a wide temperature range from 56 to 350°C with high relative permittivity (>3300) and low dielectric loss (<0.02) at 150°C, which indicated promising future for (1?x)BNT‐xPMN system as high‐temperature stable capacitor materials.  相似文献   

9.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

10.
Mn‐doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (MnBNBT) thin films were prepared on SrRuO3 (SRO)‐coated (001) SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different processing conditions. Structural characterization (i.e., XRD and TEM) confirms the epitaxial growth of STO/SRO/MnBNBT heterostructures. Through the judicious control of deposition temperature, the defect level within the films can be finely tuned. The MnBNBT thin film deposited at the optimized temperature exhibits superior ferroelectric and piezoelectric responses with remanent polarization Pr of 33.0 μC/cm2 and piezoelectric coefficient d33 of 120.0 ± 20 pm/V.  相似文献   

11.
Structural analysis of electrically poled samples of polycrystalline, (1‐x)Bi(Mg1/2Zr1/2)O3xPbTiO3 piezoceramics across morphotropic phase boundary reveals electric field‐induced cubic to tetragonal phase transition and significant domain reorientation in tetragonal and two‐phase compositions. The c‐axis domain elongation is observed for tetragonal compositions after poling. The morphotropic phase boundary composition, having coexisting cubic and tetragonal phases in the unpoled state, exhibits alteration in relative proportion of the two phases, in addition to domain extension and reorientation along c‐axis. For the morphotropic phase boundary composition, the tetragonality (c/a) is enhanced with significantly large c‐axis strain (~0.92%) in tetragonal phase after poling. Origin of ferroelectric P‐E loop in cubic compositions is linked with the electric field‐induced phase transition.  相似文献   

12.
CuO‐added (LixK0.9?xNa0.1)NbO3 [C(LxK0.9?xN0.1)N] ceramics with 0.0≤x≤0.05 were well‐sintered at 960°C for 6 hours. The lattice parameters of the specimens decreased with the addition of Li2O. Defect polarization (PD) formed between Cu2+ions and oxygen vacancies. Double polarization vs electric field (P‐E) hysteresis and sprout‐shaped strain vs electric field (S‐E) curves were observed in these specimens with a large strain of 0.16% at 7.0 kV/mm, possibly owing to the presence of PD. When the P‐E curve was measured at temperatures higher than 75°C, the C(K0.9N0.1)N ceramic exhibited a normal P‐E hysteresis curve, whereas the C(L0.04K0.86N0.1)N ceramic maintained the double P‐E hysteresis curve up to 125°C, indicating that Li2O increased the thermal stability of PD. The latter specimen also showed the sprout shaped S‐E curve with a strain of 0.15% at 7.0 kV/mm after 104 cycles of a high electric field of 7.0 kV/mm.  相似文献   

13.
The piezoelectric properties of (K0.5Na0.5)NbO3 (KNN) are normally enhanced by chemical substitutions or doping to form solid solutions. In this study, we report that the piezoelectric properties of KNN and thermal stability of piezoelectric coefficient d33 can be both enhanced by forming the composite of KNN:ZnO. The d33 of KNN:0.2ZnO can be improved to 110 pC/N by introducing the ZnO nanoparticles, which is better than the pure KNN (d33 = 85 pC/N). The Curie temperature (TC = 407°C) remains well comparable to the pure KNN (TC = 408°C). Furthermore, the thermal stability of both remanent polarization (Pr) and piezoelectric parameter (d33) is improved. The enhanced thermal stability could be related to the induced built‐in electric field or the enhanced sinterability by the addition of ZnO. The present results may help to optimize the piezoelectric properties of lead‐free materials by forming composite.  相似文献   

14.
Pb (In1/2Nb1/2) O3‐Pb (Sc1/2Nb1/2) O3‐PbTiO3 (PIN‐PSN‐PT) ternary ceramics with compositions near morphotropic phase boundary (MPB) were fabricated by solid‐state‐sintering process. Dielectric and piezoelectric properties of xPIN‐yPSN‐zPT (x = 0.19, 0.23 and z = 0.365, 0.385) ceramics were investigated as a function of temperature, showing high Tr‐t and Tc on the order of 160 ~ 200°C and 280 ~ 290°C, respectively. The xPIN‐yPSN‐0.365PT (x = 0.19 and 0.23) ceramics do not depolarize at the temperature up to 200°C, showing a better thermal stability when compared to the state‐of‐the‐art relaxor‐PbTiO3 systems. A slight variation (<9%) of kp, kt, and k33 was observed in the temperature range of 25°C‐160°C for xPIN‐yPSN‐0.385PT (x = 0.19 and 0.23) ceramics. Rayleigh analysis was employed to quantify the contribution of domain wall motion to piezoelectric response, where the domain wall contribution was found to increase with composition approaching MPB for PIN‐PSN‐PT system.  相似文献   

15.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

16.
High‐performance lead‐free piezoelectric ceramics 0.94(K0.45Na0.55)1?xLix(Nb0.85Ta0.15)O3–0.06AgNbO3 (KNNLTAg‐x) were successfully prepared by spark plasma sintering technique. The doping effect of Li on the structural and electrical properties of KNNLTAg‐x (x=0, 0.02, 0.04, 0.06, 0.08 and 0.10) ceramics was studied. The lattice structure, ferroelectric and piezoelectric properties of the KNLNTAg‐x ceramics are highly dependent on the Li doping level. In particular, the Li dopant has a great impact on both Curie temperature Tc and orthorhombic‐tetragonal transition temperature TO‐T. The 4% Li‐doped sample exhibited relatively high TO‐T of 95°C, leading to a stable dynamic piezoelectric coefficient (d33*) of 220‐240 pm/V in a broad temperature range from 25°C to 105°C. Additionally, the 2% Li‐doped sample shows a high d33* of 320 pm/V at 135°C, suggesting its great potential for high‐temperature applications.  相似文献   

17.
E‐field‐ and temperature‐dependent domain evolution of lead‐free tetragonal (K, Na, Li)(Nb, Sb, Ta)O3 (KNLNTS) single crystals as well as its corresponding electrical properties have been investigated. When E field is applied along [011]C direction, (2T) engineered domain structure is formed. Spontaneous polarizations switch under a critical electric field (around 4‐5 kV/cm), resulting in significant changes in domain structure and great improvement in piezoelectric properties. Furthermore, it is found that piezoelectric constant d31 and electromechanical coupling factor k31 of [011]C poled KNLNTS single crystal decrease with temperature. The extrinsic and intrinsic piezoelectric responses are discussed from the viewpoint of domain structure and lattice distortion, respectively. Our results show that the nanodomain structure relaxes and the lattice distortion declines with temperature, resulting in reduction of extrinsic and intrinsic piezoelectric responses, respectively. Therefore, the piezoelectric instability is ascribed to the decrease of both extrinsic and intrinsic contributions. This work provides a better understanding of domain engineering technique, and the useful information on the improvement of both piezoelectricity and temperature stability of the lead‐free piezoelectric materials.  相似文献   

18.
The validity of Mn element on 0.93(Bi0.5Na0.5)TiO3‐0.07Ba(Ti0.945Zr0.055)O3 ceramics (BNT‐BZT‐xMn) is certified by doping. On account of multiple effects introduced by Mn, the appropriate Mn content facilitates property improvement effectively. Compared with pure BNT‐BZT, d33 of the component x = 0.25 increases about 8% up to 187 pC/N and Qm of the component x = 1 increases about 84% up to 197. Thermally stimulated depolarization currents (TSDC) measurement reveals Mn additive is helpful to pyroelectric properties as well. The Mn‐doped component x = 0.125 exhibits better pyroelectric performance at room temperature. Corresponding pyroelectric coefficient and the figures of merit reach up to 0.061 μC/(cm2 °C), Fi=217 pm/V, Fν = 0.023 m2/C, and Fd = 12.6 μPa?1/2, respectively, even superior to lead‐based ceramics. Similar pyroelectric advantage is also observed in the component x = 0.5 near depolarization temperature Td. Mn doping has slight harmful influence on the ferroelectric‐to‐relaxor transition temperature TF?R, as well as Td, but hardly shows restriction on application. These results confirm Mn doping is an available strategy to improve BNT‐based ceramics. Therefore, Mn‐doped BNT‐BZT ceramics will be excellent candidates in area of high‐power piezoelectric application and pyroelectric detectors.  相似文献   

19.
A significant luminescence modulation behavior based on photochromic reactions was observed in Ho3+‐doped (Na0.52K0.48)0.92Li0.08NbO3 ceramics, fabricated by the conventional solid‐state reaction method. Under visible light irradiation (407 nm) for 20 second, the samples changed pale gray from initial pale green, and returned to their original color by a thermal stimulus of 230°C for 10 minutes, showing typical photochromic phenomenon. Under 453 nm excitation, the samples exhibited strong green emission at 551 nm. Interestingly, their green emission intensity can be effectively tailored by controlling photochromic reaction processes (irradiation wavelength and time), and the luminescent modulation ratio (ΔRt) reaches up to 77%. And, the ΔRt value has no any obvious degradation after 10 cycles by alternating visible light irradiation and thermal stimulus, showing excellent reversibility. These results make it potential applications in many fields as a kind of multifunctional material.  相似文献   

20.
x% mol MnO2‐doped Ba0.925Ca0.075TiO3 ceramics (abbreviated as BCT‐Mnx, x=0‐1.5) were synthesized by conventional solid‐state reaction method. The effects of MnO2 addition and (Ba+Ca)/Ti mole ratio (A/B ratio) on the microstructure and electrical properties of the ceramics were investigated. The internal bias filed Ei was determined from the asymmetrical polarization hysteresis loops and found to increase with the doping concentration of MnO2. High mechanical quality factors (Qm>1200) and low dielectric loss (tanδ<0.5%) were found in the BCT‐Mn0.75 and BCT‐Mn1.0 ceramics with Ei>3 kV/cm, meanwhile, the piezoelectric and electromechanical properties were found to decrease compared with the pure BCT, exhibiting a typical characteristic of “hard” behavior. Of particular interest is that the microstructure of BCT‐Mn0.75 ceramics could be controlled by changing the A/B ratio, where enhanced piezoelectric coefficient d33 on the order of 190 pC/N was obtained in the BCT‐Mn0.75 ceramics with A/B=1.01 due to its fine‐grained microstructure, with yet high Qm, being on the order of 1000. The high d33 and Qm in MnO2‐doped BCT ceramics make it a promising candidate for high power piezoelectric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号