首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 484 毫秒
1.
L-苹果酸对老年大鼠组织中转氨酶活性的影响   总被引:1,自引:0,他引:1  
吴军林  吴清平  张菊梅 《食品科学》2007,28(10):507-510
L-苹果酸(malicacid)是生物体代谢过程中产生的重要有机酸,在线粒体产生能量物质ATP的代谢过程中起到重要作用。为探讨苹果酸对老年机体不同组织中酶活性的影响,将实验动物SD大鼠随机分为4组,每组6只,连续灌胃苹果酸30d,测定大鼠体内丙氨酸氨基转移酶(ALT)及天冬氨酸氨基转移酶(AST)活性。发现老年大鼠肝脏中ALT及AST活性低于年轻对照大鼠,苹果酸可提高老年大鼠肝脏中ALT活性41.98%,提示苹果酸可改善老年肝脏酶代谢能力,有利于提高新陈代谢。  相似文献   

2.
L-苹果酸是一种重要的天然有机酸,广泛分布于植物、动物与微生物细胞中,其口感接近天然苹果的酸味。属于新一代的食品酸味剂,是目前世界食品工业中用量和发展前景较好的有机酸之一。L-苹果酸是生物体代谢过程中的重要中间产物,在线粒体产生能量物质ATP的代谢过程中起到重要作用。L-苹果酸具有抗氧化活性,能够捕获自由基,具有促进抗癌药物及钙离子吸收作用,以及其他保健功能,在食品工业领域有良好的应用前景。  相似文献   

3.
L-苹果酸是生物体代谢过程中产生的重要有机酸,具有许多生物功能和生物活性,尤其在能量代谢方面对保护人类健康起着重要的作用。近年来微生物发酵法生产L-苹果酸的优势逐渐显现,随着苹果酸生物合成途径的阐明及其相关基因的克隆,运用基因工程手段调控微生物合成苹果酸已成为可能。本文对苹果酸生物合成代谢途径及重要酶和相关基因的研究进展进行综述,并对近年来苹果酸产生菌的最新研究进行总结,最后展望了未来构建苹果酸基因工程菌的研究方向。  相似文献   

4.
采用半定量RT-PCR方法,对小鼠给予L-苹果酸后肝线粒体苹果酸天冬氨酸穿梭相关的两种线粒体酶:线粒体天冬氨酸氨基转移酶(mitochondrialaspartateaminotransferase,mAST)及线粒体苹果酸脱氢酶(mitochondrialmalatedehydrogenase,mMDH)及线粒体内膜上的天冬氨酸谷氨酸转运蛋白(AGC)与α-酮戊二酸苹果酸转运蛋白(OMC)的基因表达进行检测,探讨了L-苹果酸对肝线粒体苹果酸天冬氨酸穿梭的关键酶及转运蛋白mRNA表达规律。半定量RT-PCR结果表明:剂量组小鼠肝线粒体转运蛋白AGCmRNA的表达显著高于空白对照组,而mAST、mMDH及转运蛋白OMCmRNA的表达无显著性差异。由此可知,L-苹果酸能促进TCA循环及苹果酸天冬氨酸穿梭,其分子生物学机理与L-苹果酸提高AGC的基因表达水平有关。  相似文献   

5.
L-苹果酸在食品、医药、化工等领域被广泛应用。工业上以石油基原料为底物,通过化学法或酶法合成L-苹果酸。随着石油资源的日渐短缺,利用可再生资源以生物法合成L-苹果酸受到人们的重视。近年来应用代谢工程策略改造大肠杆菌、酵母菌等菌株,进行L-苹果酸的合成,具有一定应用前景。同时,应用合成代谢工程在体外构建代谢途径进行L-苹果酸合成,具有较高的理论价值。本文首先总结了L-苹果酸合成的代谢途径;其次对L-苹果酸合成的代谢工程策略进行了综述,包括强化L-苹果酸合成代谢途径、删除副产物合成途径、促进还原力再生,以期较为系统地阐述L-苹果酸代谢机制的研究现状;最后对L-苹果酸代谢工程的研究方向进行了展望。  相似文献   

6.
对12月龄SD大鼠给予L-苹果酸30d后,采用含有SYBR Green I的Real Time RT-PCR法,对肝脏和心脏线粒体苹果酸天冬氨酸穿梭中的两种转运蛋白(天冬氨酸谷氨酸转运蛋白(AGC)与α-酮戊二酸苹果酸转运蛋白(OMC))以及两种抗氧化酶(过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px))的基因表达进行检测,以研究L-苹果酸增强线粒体抗氧化作用的分子生物学机制。结果表明:苹果酸组中大鼠心肌细胞AGC、OMC、CAT、GSH-Px的mRNA表达量分别是空白对照组的1.25、1.39、1.12、1.01倍。苹果酸组中大鼠肝脏细胞AGC、OMC、CAT、GSH-Px的mRNA表达量分别是空白对照组的1.33、1.02、1.25、0.94倍。由此推测,L-苹果酸可能通过促进苹果酸天冬氨酸穿梭蛋白以及抗氧化酶的基因表达,实现提高线粒体的抗氧化作用。  相似文献   

7.
苹果酸是葡萄酒中重要的有机酸之一,其生理代谢比较活跃,易被微生物分解利用,在葡萄酒酿造工艺中起关键作用。葡萄酒的苹果酸-乳酸发酵(以下简称MLF)是乳酸菌以L-苹果酸为底物,在苹果酸-乳酸酶催化下转变成L-乳酸和CO2的过程。酸味尖刻的二元酸L-苹果酸向酸味柔和的一元酸L-乳酸的转化,使葡萄酒总酸下降,酸涩感降低,使酒体口感酸味柔和协调,果香突出,提高葡萄酒的品质。如果对MLF控制不当,就有可能给葡萄酒带来刺激的酸乳味、苦昧等,还可产生某些挥发性的酚类或生物胺(如组胺、腐胺、尸胺等),  相似文献   

8.
目的:研究L-苹果酸对老年大鼠不同组织脂质过氧化水平和抗氧化能力的影响,探索L-苹果酸增强老年机体抗氧化能力的作用机理。方法:以24月龄大鼠作为老年动物模型,通过给大鼠灌胃L-苹果酸30d后,评价L-苹果酸对老年大鼠不同组织中脂质过氧化产物丙二醛(MDA)含量及抗氧化酶活性的影响。结果:补充L-苹果酸能分别提高老年大鼠肝脏总超氧化物歧化酶(TSOD)、铜锌-超氧化物歧化酶(CuZnSOD)、谷胱苷肽过氧化酶(GPx)的活性34.4%、34.2%和39.9%。结论:L-苹果酸可以增强机体的抗氧化能力,减少脂质过氧化的发生,起到抗氧化作用。  相似文献   

9.
为探究二氧化硫(sulfur dioxide,SO_2)对木纳格葡萄采后果实中有机酸含量及苹果酸代谢调控的影响。基于高效液相色谱(high performance liquid chromatography,HPLC)测定果实贮藏过程中酒石酸、L-苹果酸、L-抗坏血酸和柠檬酸含量的变化,采用转录组测序(RNAsequencing,RNA-Seq)分析SO_2调控果实苹果酸代谢的主要途径。并通过测定苹果酸脱氢酶基因(malate dehydrogenase,MDH)、细胞质苹果酸脱氢酶基因(cytoplasmic malate dehydrogenase,cyt MDH)、线粒体苹果酸脱氢酶基因(mitochondrial malate dehydrogenase,mt MDH)、乳酸脱氢酶基因(L-lactate dehydrogenase,LDH)、NADP-苹果酸酶基因(NADP-dependent malic enzyme,NADP-ME)、丙酮酸脱羧酶1基因(pyruvate decarboxylase1,PDC1)、丙酮酸脱羧酶2基因(pyruvate decarboxylase2,PDC2)和乙醇脱氢酶基因(alcoholdehydrogenase,ADH)的表达差异性,进一步验证转录组测序的结果。结果表明:贮藏第60d,SO_2处理组果实中酒石酸、L-抗坏血酸和柠檬酸分别比CK组高0.13 mg/g、0.34 mg/100 g、0.02 mg/g;L-苹果酸比CK组低0.64 mg/g。SO_2可以维持木纳格葡萄果实中的酒石酸、L-抗坏血酸和柠檬酸含量,通过上调mt MDH、LDH、NADP-ME、PDC1和下调MDH、cyt MDH、PDC2、ADH的相对表达量,促进果实中L-苹果酸含量的分解,保持果实的风味特征。本研究为研究SO_2对鲜食葡萄采后果实有机酸代谢的调控作用提供理论依据。  相似文献   

10.
苹果酸是葡萄酒中重要的有机酸之一,其生理代谢比较活跃,易被微生物分解利用,在葡萄酒酿造工艺中起关键作用.葡萄酒的苹果酸-乳酸发酵(以下简称MLF)是乳酸菌以L-苹果酸为底物,在苹果酸一乳酸酶催化下转变成L-乳酸和CO2的过程[1].酸味尖刻的二元酸L-苹果酸向酸味柔和的一元酸L-乳酸的转化,使葡萄酒总酸下降,酸涩感降低,使酒体口感酸味柔和协调,果香突出,提高葡萄酒的品质.  相似文献   

11.
产朊假丝酵母利用有机酸的研究   总被引:1,自引:0,他引:1  
在有机酸为唯一碳源的培养中培养产朊假丝酵母(Candida utilis)时,以L-苹果酸、乳酸、琥珀酸或柠檬酸为碳源的培养基经过48h后,有机酸浓度均由初始浓度5.0g/L下降到0.0g/L。以乙酸、草酸和富马酸为碳源的培养基有机酸浓度始终没有明显变化,说明产朊假丝酵母能够利用细胞外的L-苹果酸、乳酸、琥珀酸和柠檬酸,不能利用乙酸、草酸和富马酸。当葡萄糖和L-苹果酸、乳酸、琥珀酸和柠檬酸中的某种有机酸共同做碳源时,葡萄糖浓度均可以在32h内从20.0g/L降到0.0g/L,而各有机酸在0~24h内浓度变化不大,24~48h浓度均有不同程度的下降,说明当培养基中有葡萄糖时,有机酸的利用受到抑制。当浓度均为2g/L的L-苹果酸、乳酸、琥珀酸和柠檬酸同时做碳源培养产朊假丝酵母时,乳酸大约经过40h浓度首先降到0.0g/L,L-苹果酸、柠檬酸、琥珀酸浓度在0~16h过程中没有明显变化,16~48h下降趋势明显,最后也都被菌体完全利用,说明乳酸比较容易被菌体利用,而L-苹果酸、琥珀酸和柠檬酸在被菌体利用先后顺序上没有明显区别。  相似文献   

12.
The ambivalent consequences of mitochondrial stimulation on cellular activity have been well established. Mitochondria supply the cell with energy through a process of oxidative phosphorylation but thereby generate free radicals, resulting in the accumulation of hydrogen peroxide in the cytoplasm. We have investigated the impact of cellular senescence as well as UV irradiation, on the balance between these two activities.
The adenosine triphosphate (ATP) level, DNA and protein synthesis in fibroblasts obtained from donors between 30 and 90 years of age appeared to be significantly influenced by the aging process. Both DNA and protein synthesis could be stimulated by increasing intracellular ATP levels. In-vitro senescent fibroblasts showed a reduction in the level of ATP as well as a shift in mitochondrial membrane potential. At the same time, there was an increase in intracellular hydrogen peroxide with increasing population doubling, indicating a clear dysfunction of the metabolic machinery in the mitochondria of senescent cells. To counteract this degradation of the energy pool, we treated cells with creatine, which is known to restore the pool of phosphocreatine in the mitochondria. Creatine treatment significantly increased cell survival after UV exposure, stimulated the repair of UVB-induced DNA damage in keratinocytes and caused a significant reduction in the number of sunburn cells in a UVB-exposed reconstituted skin model. These results clearly indicate that restoration of the energy pool in mitochondria increased cellular self-defense mechanism. These data show the important role played by the mitochondrial energy metabolism on the aging process, and indicate a possible therapy that can be used to counteract this negative effect. Treatment with creatine seems to provide the necessary boost to the cellular metabolism, which leads to an induction of a significant amount of protection and repair to human skin cells.  相似文献   

13.
以“雨花三号”水蜜桃为试样,研究了桃果实活性氧和线粒体呼吸代谢相关酶的变化对果实成熟衰老进程的影响。结果表明:桃果实成熟过程中硬度下降较快,呼吸强度有明显的高峰,并且果实硬度的快速变化期要明显早于呼吸高峰期。随着桃果实成熟衰老的加剧,果实内活性氧量有累积趋势。桃果实成熟过程中线粒体琥珀酸脱氢酶(SDH)、线粒体细胞色素氧化酶(CCO)、H+-ATPase酶和Ca2+-ATPase酶活性在成熟后期都有不同程度的降低,线粒体的钙含量却增大。活性氧代谢与线粒体内代谢联系紧密,它们是影响果实衰老的重要因素。  相似文献   

14.
The role of endogenous lipid in the provision of energy during in vitro maturation of immature porcine oocytes has been studied. Fluorescence resonance energy transfer (FRET) acceptor bleaching methods have been used to examine mitochondrial:lipid droplet co-localisation in live oocytes. FRET experiments demonstrate whether organelles are within the FRET-distance (i.e. 6-10 nm), thus showing true association on a molecular scale. Immature and in vitro-matured porcine oocytes were stained with Mitotracker Green (MTG; mitochondria) and Nile Red (NR; lipid droplets). The data indicated sufficient overlap between MTG emission and NR excitation to support a FRET reaction and that mitochondria and lipid droplets were sufficiently co-localised for a FRET reaction to occur. When NR-stained lipid droplets were specifically bleached, a significant increase in the MTG signal in stained mitochondria was observed (FRET efficiency, E=22.2 +/- 3.18%). These results strongly suggest a metabolic role for lipid metabolism during oocyte maturation. This conclusion was reinforced by the use of inhibitors of fatty acid beta-oxidation, methyl palmoxirate or mercaptoacetate, exposure to which during oocyte maturation led to developmental failure post-fertilisation. These data provide strong evidence that MTG and NR can act as a FRET pair and that in porcine oocytes, mitochondria and lipid droplets lie within 6-10 nm of each other, indicating association on a molecular scale. The findings also suggest that endogenous triglycerides play an important role in energy metabolism during porcine in vitro maturation.  相似文献   

15.
《Journal of dairy science》2021,104(9):10415-10425
As milk production in dairy cattle continues to increase, so do the energetic and nutrient demands on the dairy cow. Difficulties making the necessary metabolic adjustments for lactation can impair lactation performance and increase the risk of metabolic disorders. The physiological adaptations to lactation involve the mammary gland and extramammary tissues that coordinately enhance the availability of precursors for milk synthesis. Changes in whole-body metabolism and nutrient partitioning are accomplished, in part, through the bioenergetic and biosynthetic capacity of the mitochondria, providing energy and diverting important substrates, such as AA and fatty acids, to the mammary gland in support of lactation. With increased oxidative capacity and ATP production, reactive oxygen species production in mitochondria may be altered. Imbalances between oxidant production and antioxidant activity can lead to oxidative damage to cellular structures and contribute to disease. Thus, mitochondria are tasked with meeting the energy needs of the cell and minimizing oxidative stress. Mitochondrial function is regulated in concert with cellular metabolism by the nucleus. With only a small number of genes present within the mitochondrial genome, many genes regulating mitochondrial function are housed in nuclear DNA. This review describes the involvement of mitochondria in coordinating tissue-specific metabolic adaptations across lactation in dairy cattle and the current state of knowledge regarding mitochondrial-nuclear signaling pathways that regulate mitochondrial proliferation and function in response to shifting cellular energy need.  相似文献   

16.
New aspects of inorganic polyphosphate metabolism and function   总被引:4,自引:0,他引:4  
The review analyzes the results of recent studies on the biochemistry of high-molecular inorganic poly-phosphates (PolyPs). The data obtained lead to the following main conclusions. PolyPs are polyfunctional compounds. The main role of PolyPs is their participation in the regulation of metabolism both at the genetic and metabolic levels. Among the functions of PolyPs known at present, the most important are the following: phosphate and energy storage; regulation of the levels of ATP and other nucleotide and nucleoside-containing coenzymes; participation in the regulation of homeostasis and storage of inorganic cations and other positively charged solutes in an osmotically inert form; participation in membrane transport processes mediated by poly-beta-Ca2+-hydroxybutyrate complexes; participation in the formation and functions of cell surface structures; control of gene activity; and regulation of activities of the enzymes and enzyme assemblies involved in the metabolism of nucleic acids and other acid biopolymers. However, the functions of PolyPs vary among organisms of different evolutionary levels. The metabolism and functions of PolyPs in each cellular compartment of procaryotes (cell wall, plasma membrane, cytosol) and eucaryotes (nuclei, vacuoles, mitochondria, plasma membrane, cell wall, mitochondria, cytosol) are unique. The synthesis and degradation of PolyPs in the organelles of eucaryotic cells are possibly mediated by different sets of enzymes. This is consistent with of the endosymbiotic hypothesis of eucaryotic cell origin. Some aspects of the biochemistry of high-molecular PolyPs are considered to be of great significance to the approach to biotechnological, ecological and medical problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号