首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The physiological adjustments to aerobic work (5.6 km/h, up a 9% grade) and to exhausting treadmill work of former champion middle-distance runners were determined in 1971, at ages 47-68 yr, 25-43 yr after their competitive careers in track. In the resting state the former athletes as a group are very much like nonathletes of the same ages. Efficiency in the aerobic walk was the same in both groups and did not change with age in either, but the former athletes on the average performed the walk with less strain as indicated by lower blood lactates, "ventilatory equivalents," and heart rates than nonathletes at corresponding ages. Mean VO2max of the runners declined from 71.4 ml/min-kg-1 in youth to 41.8 at a mean age of 56.6 yr, as compared with mean values of 50.6 and 36.5 ml/min-kg-1 in nonathletes at corresponding ages. VO2max had declined below the average of nonathletic men in only two of the former runners. Mean maximal heart rate declined with age from 186 to 180 in the runners, and from 199 to 186 in nonathletes at corresponding ages. Ventilatory responses of men in both groups were closely related to the increases of blood lactate in both aerobic and maximal work.  相似文献   

2.
PURPOSE: To determine whether there is a significant relationship between accumulated oxygen deficit (AOD) and 800-m running performance in a group of runners of homogeneous ability. METHODS: Nine well-trained male middle and long distance runners (age = 24.7 +/- 4.5 yr, body mass = 69.4 +/- 8.5 kg, VO2max = 64.8 +/- 4.5 mL.kg-1.min-1) underwent treadmill testing to determine maximum oxygen uptake (VO2max), running economy (RE) at 1% and 10.5% treadmill gradient, and AOD at 1% and 10.5% treadmill gradient; 800-m running performance was determined by time trials on an outdoor 440-yd track, for which the average time was 132 +/- 4 s. For the AOD test, subjects were required to run on the treadmill at supramaximal speeds until volitional exhaustion. The AOD value was calculated using linear (LIN) and curvilinear (CUR) extrapolation procedures. RESULTS: Mean AOD values using LIN and CUR were 45.0 +/- 6.9 and 59.3 +/- 10.1 mL.kg-1 at a 1% treadmill gradient and 63.2 +/- 10.6 and 93.6 +/- 19.7 mL.kg-1 at a 10.5% gradient, respectively. No significant relationship was found between 800-m run time and AOD at 1% gradient or 10.5% gradient or when AOD was estimated from a linear or curvilinear fit of the VO2 data. Other variables measured in this study (e.g., VO2max and running economy) were not found to be predictive of 800-m run time. CONCLUSION: Among a homogeneous group of well-trained male middle- and long-distance runners, AOD measured at a 1% and 10.5% treadmill gradient is not significantly related to 800-m running performance.  相似文献   

3.
It is well documented that endurance exercise training results in a blunted norepinephrine (NE) response to exercise of a given absolute exercise intensity. However, it is not clear what effect training has on the catecholamine response to exercise of the same relative intensity because previous studies have provided conflicting results. The purpose of the present study was, therefore, to determine the catecholamine response to exercise of the same relative exercise intensity before and after endurance exercise training. Six women and three men [age 28 +/- 8 (SD) yr] performed 10 wk of training. Maximal O2 uptake (VO2 max) was determined during treadmill exercise. Fifteen-minute treadmill exercise bouts were performed at 60, 65, 70, 75, 80, and 85% of VO2 max before and after training. VO2 max was increased by 20% (from 39.2 +/- 7.7 to 46.9 +/- 8.1 ml. kg-1. min-1; P < 0.05) in response to training. Plasma NE concentrations were higher (P < 0.05) during exercise at the same relative intensity after, compared with before, training at 65-85% of VO2 max. Differences between heart rates and plasma epinephrine concentrations after, compared with before, training were not statistically significant. These results provide evidence that the NE response to exercise is dependent on the absolute as well as the relative intensity of the exercise.  相似文献   

4.
The purpose was to compare cardiorespiratory kinetics during exercise of different muscle groups (double-leg cycling vs treadmill walking and single-leg ankle plantar flexion) in old and young subjects. Oxygen uptake (VO2) during exercise transitions was measured breath by breath, and the phase 2 portion of the response was fit by a monoexponential for determination of the time constant (tau) of VO2. Two separate studies were performed: in study 1, 12 old (age 66.7 yr) and 16 young (aged 26.3 yr) subjects were compared during cycling and ankle plantar flexion exercise, and in the study 2, five old (aged 69.6 yr) and five young (24.4 yr) subjects were compared during cycling and treadmill walking. VO2 transients during square-wave cycling exercise were significantly slower in the old compared with the young groups. In contrast, VO2 kinetics did not differ between old and young groups during plantar flexion exercise. Heart rate (HR) kinetics followed the same pattern, with tau HR being significantly slower in the old vs young groups during transitions to cycling but not to plantar flexion. In study 2 tau VO2 and tau HR during on-transients to treadmill square-wave exercise were significantly slower in the old group compared with the young group, but tau VO2 was significantly faster during treadmill exercise than during cycling in the old group. The differences with aging between the modes of exercise may be related to the muscle mass involved and the circulatory demands. On the other hand, slowed VO2 kinetics with age appear to occur in a mode (cycling) in which the muscles are not accustomed to the activity, whereas in a mode of normal activity (walking) and with the muscle groups (plantar flexors) accustomed to the activity, VO2 kinetics are not slowed to the same degree with age.  相似文献   

5.
The effects of physical conditioning on antipyrine clearance were studied in two groups of subjects. Healthy men not engaged in the systematic practice of any sport were compared with endurance runners (defined as men running > 80 km/week). Studies were carried out at three different periods of the annual plan training at 4-month intervals. Antipyrine was administered orally and pharmacokinetic parameters were obtained from saliva samples by the multiple-sample method. Endurance performance, expressed in terms of the maximal oxygen uptake (VO2max), the ventilatory threshold and the 4-mM x l(-1) lactate threshold (OBLA), was higher in trained than in control subjects at each of the three periods. Antipyrine clearance was also significantly elevated and antipyrine half-life reduced in runners during all periods. No significant difference in VO2max or antipyrine clearance was found between the various periods in either trained or control subjects. Both ventilatory threshold and OBLA increased significantly along the training period in conditioned subjects. Significant correlations were found between antipyrine clearance and VO2max, ventilatory threshold and OBLA. In summary, these results indicate an association between aerobic conditioning and increased hepatic oxidative metabolism of low-clearance drugs.  相似文献   

6.
Using a meta-analytic approach, we recently reported that the rate of decline in maximal oxygen uptake (VO2 max) with age in healthy women is greatest in the most physically active and smallest in the least active when expressed in milliliters per kilogram per minute per decade. We tested this hypothesis prospectively under well-controlled laboratory conditions by studying 156 healthy, nonobese women (age 20-75 yr): 84 endurance-trained runners (ET) and 72 sedentary subjects (S). ET were matched across the age range for age-adjusted 10-km running performance. Body mass was positively related with age in S but not in ET. Fat-free mass was not different with age in ET or S. Maximal respiratory exchange ratio and rating of perceived exertion were similar across age in ET and S, suggesting equivalent voluntary maximal efforts. There was a significant but modest decline in running mileage, frequency, and speed with advancing age in ET. VO2 max (ml . kg-1 . min-1) was inversely related to age (P < 0.001) in ET (r = -0.82) and S (r = -0.71) and was higher at any age in ET. Consistent with our meta-analysic findings, the absolute rate of decline in VO2 max was greater in ET (-5.7 ml . kg-1 . min-1 . decade-1) compared with S (-3.2 ml . kg-1 . min-1 . decade-1; P < 0. 01), but the relative (%) rate of decline was similar (-9.7 vs -9. 1%/decade; not significant). The greater absolute rate of decline in VO2 max in ET compared with S was not associated with a greater rate of decline in maximal heart rate (-5.6 vs. -6.2 beats . min-1 . decade-1), nor was it related to training factors. The present cross-sectional findings provide additional evidence that the absolute, but not the relative, rate of decline in maximal aerobic capacity with age may be greater in highly physically active women compared with their sedentary healthy peers. This difference does not appear to be related to age-associated changes in maximal heart rate, body composition, or training factors.  相似文献   

7.
The principal objective of this study was to test the hypothesis that acclimatization to moderate altitude (2,500 m) plus training at low altitude (1,250 m), "living high-training low," improves sea-level performance in well-trained runners more than an equivalent sea-level or altitude control. Thirty-nine competitive runners (27 men, 12 women) completed 1) a 2-wk lead-in phase, followed by 2) 4 wk of supervised training at sea level; and 3) 4 wk of field training camp randomized to three groups: "high-low" (n = 13), living at moderate altitude (2,500 m) and training at low altitude (1,250 m); "high-high" (n = 13), living and training at moderate altitude (2,500 m); or "low-low" (n = 13), living and training in a mountain environment at sea level (150 m). A 5,000-m time trial was the primary measure of performance; laboratory outcomes included maximal O2 uptake (VO2 max), anaerobic capacity (accumulated O2 deficit), maximal steady state (MSS; ventilatory threshold), running economy, velocity at VO2 max, and blood compartment volumes. Both altitude groups significantly increased VO2 max (5%) in direct proportion to an increase in red cell mass volume (9%; r = 0.37, P < 0.05), neither of which changed in the control. Five-kilometer time was improved by the field training camp only in the high-low group (13.4 +/- 10 s), in direct proportion to the increase in VO2 max (r = 0.65, P < 0.01). Velocity at VO2 max and MSS also improved only in the high-low group. Four weeks of living high-training low improves sea-level running performance in trained runners due to altitude acclimatization (increase in red cell mass volume and VO2 max) and maintenance of sea-level training velocities, most likely accounting for the increase in velocity at VO2 max and MSS.  相似文献   

8.
Our objectives were to determine effects of head-out immersion (HOI), scuba breathing, and water temperature on cardiorespiratory responses to maximal aerobic work. Measurements of VO2, VE, and heart rate (HR) were obtained on seven men (27 yr, 177 cm, 67 kg) as they performed the same upright bicycling exercise to exhaustion (4-5 min) in 23 degrees C air and 30 degrees C water. Maximal oxygen uptake (VO2 max) during HOI was 3.18 liters - min-1, which was not statistically different from the mean of 3.29 liters- min-1 in air. When compressed air was breathed via scuba during HOI, VO2 max was 3.12 liters- min-1 and not significantly different from that when room air was breathed and a low-resistance valve in water was used. HOI decreased VE by 15.7 liters - min-1 and HR by 10 beats (b) - min-1. Scuba breathing further reduced VE by 22.0 liters - min-1. Similar measurements were made on four of the subjects after 18 min of HOI in water temperatures of 35,30, and 25 degrees C. Water temperature had no significant affect on VO2 max, although HR was 8 b- min-1 lower in 30 degrees C and 15 b - min-1 lower in 25 degrees C as compared to 35 degrees C water. The results show that VO2 max was not significantly changed by HOI, scuba breathing, or brief exposures to 25, 30, and 35 degrees C water, despite significant reductions that occurred for VE and HR.  相似文献   

9.
PURPOSE: The purpose of this study was to examine the power of 16 parameters beside the individual anaerobic threshold (IAT) in predicting performance in various competition distances. METHODS: This study examined 427 competitive runners to test the prediction probability of the IAT and other parameters for various running distances. All runners (339 men, 88 women; ages, 32.5 +/- 10.14 yr; training, 7.1 +/- 5.53 yr; training distance, 77.9 +/- 35.63 km.wk-1) performed an increment test on the treadmill (starting speed, 6 or 8 km.h-1; increments, 2 km.h-1; increment duration, 3 min to exhaustion). The heart rate (HR) and the lactate concentrations in hemolyzed whole blood were measured at rest and at the end of each exercise level. The IAT was defined as the running speed at a net increase in lactate concentration 1.5 mmol.L-1 above the lactate concentration at LT. RESULTS: Significant correlations (r = 0.88-0.93) with the mean competition speed were found for the competition distances and could be increased using stepwise multiple regression (r = 0.953-0.968) with a set of additional parameters from the training history, anthropometric data, or the performance diagnostics. CONCLUSIONS: The running speed at a defined net lactate increase thus produces an increasing prediction accuracy with increasing distance. A parallel curve of the identity straight lines with the straight lines of regression indicates the independence of at least a second independent performance determining factor.  相似文献   

10.
We subjected 29 healthy young women (age: 27 +/- 1 yr) with a wide range of fitness levels [maximal oxygen uptake (VO2 max): 57 +/- 6 ml . kg-1 . min-1; 35-70 ml . kg-1 . min-1] to a progressive treadmill running test. Our subjects had significantly smaller lung volumes and lower maximal expiratory flow rates, irrespective of fitness level, compared with predicted values for age- and height-matched men. The higher maximal workload in highly fit (VO2 max > 57 ml . kg-1 . min-1, n = 14) vs. less-fit (VO2 max < 56 ml . kg-1 . min-1, n = 15) women caused a higher maximal ventilation (VE) with increased tidal volume (VT) and breathing frequency (fb) at comparable maximal VT/vital capacity (VC). More expiratory flow limitation (EFL; 22 +/- 4% of VT) was also observed during heavy exercise in highly fit vs. less-fit women, causing higher end-expiratory and end-inspiratory lung volumes and greater usage of their maximum available ventilatory reserves. HeO2 (79% He-21% O2) vs. room air exercise trials were compared (with screens added to equalize external apparatus resistance). HeO2 increased maximal expiratory flow rates (20-38%) throughout the range of VC, which significantly reduced EFL during heavy exercise. When EFL was reduced with HeO2, VT, fb, and VE (+16 +/- 2 l/min) were significantly increased during maximal exercise. However, in the absence of EFL (during room air exercise), HeO2 had no effect on VE. We conclude that smaller lung volumes and maximal flow rates for women in general, and especially highly fit women, caused increased prevalence of EFL during heavy exercise, a relative hyperinflation, an increased reliance on fb, and a greater encroachment on the ventilatory "reserve." Consequently, VT and VE are mechanically constrained during maximal exercise in many fit women because the demand for high expiratory flow rates encroaches on the airways' maximum flow-volume envelope.  相似文献   

11.
Thirteen standardbred horses were trained as follows: phase 1 (endurance training, 7 wk), phase 2 (high-intensity training, 9 wk), phase 3 (overload training, 18 wk), and phase 4 (detraining, 12 wk). In phase 3, the horses were divided into two groups: overload training (OLT) and control (C). The OLT group exercised at greater intensities, frequencies, and durations than group C. Overtraining occurred after 31 wk of training and was defined as a significant decrease in treadmill run time in response to a standardized exercise test. In the OLT group, there was a significant decrease in body weight (P < 0.05). From pretraining values of 117 +/- 2 (SE) ml.kg-1.min-1, maximal O2 uptake (VO2max) increased by 15% at the end of phase 1, and when signs of overtraining were first seen in the OLT group, VO2max was 29% higher (151 +/- 2 ml.kg-1.min-1 in both C and OLT groups) than pretraining values. There was no significant reduction in VO2max until after 6 wk detraining when VO2max was 137 +/- 2 ml.kg-1.min-1. By 12 wk detraining, mean VO2max was 134 +/- 2 ml.kg-1.min-1, still 15% above pretraining values. When overtraining developed, VO2max was not different between C and OLT groups, but maximal values for CO2 production (147 vs. 159 ml.kg-1.min-1) and respiratory exchange ratio (1.04 vs. 1.11) were lower in the OLT group. Overtraining was not associated with a decrease in VO2max and, after prolonged training, decreases in VO2max occurred slowly during detraining.  相似文献   

12.
The purpose of the study was to mathematically model the regression of percent of maximal oxygen consumption (% VO2 max) on relative (% of max) heart rate (HR). The 26 subjects (Ss) were classified based on activity levels into high, medium, and low-fitness. Each S performed a series of treadmill walks and runs ranging from 30 to 100% of max VO2. Percent of VO2 max and relative HR were determined during each exercise bout. The data were subjected to a trend analysis utilizing multiple regression techniques. The associated Rs were: linear 0.966, quadratic 0.971, cubic 0.971, and quartic 0.977. The second and fourth order terms statistically accounted for more of the variability than their predecessors, but these differences were not of practical significance. There were no statistically significant differences among the fitness subgroup regression slopes or intercepts for any of the sets of regression equations. The bivariate equation was Y = 1.369-X-40.99 (Y = % VO2 max and X=relative HR) with a standard error of the estimate of 5.67 % VO2 max.  相似文献   

13.
We previously reported that patients with mild to moderate airflow limitation have a lower exercise capacity than age-matched controls with normal lung function, but the mechanism of this reduction remains unclear (1). Although the reduced exercise capacity appeared consistent with deconditioning, the patients had altered breathing mechanics during exercise, which raised the possibility that the reduced exercise capacity and the altered breathing mechanics may have been causally related. Reversal of reduced exercise capacity by an adequate exercise training program is generally accepted as evidence of deconditioning as the cause of the reduced exercise capacity. We studied 11 asymptomatic volunteer subjects (58 +/- 8 yr of age [mean +/- SD]) selected to have a range of lung function (FEV1 from 61 to 114% predicted, with a mean of 90 +/- 18% predicted). Only one subject had an FEV1 of less than 70% predicted. Gas exchange and lung mechanics were measured during both steady-state and maximal exercise before and after training for 30 min/d on 3 d/wk for 10 wk, beginning at the steady-state workload previously determined to be the maximum steady-state exercise level that subjects could sustain for 30 min without exceeding 90% of their observed maximal heart rate (HR). The training workload was increased if the subject's HR decreased during the training period. After 10 wk, subjects performed another steady-state exercise test at the initial pretraining level, and another maximal exercise test. HR decreased significantly between the first and second steady-state exercise tests (p < 0.05), and maximal oxygen uptake (VO2max) and ventilation increased significantly (p < 0.05) during the incremental test, indicating a training effect. However, the training effect did not occur in all subjects. Relationships between exercise parameters and lung function were examined by regression against FEV1 expressed as percent predicted. There was a significant positive correlation between VO2max percent predicted and FEV1 percent predicted (p < 0.02), and a negative correlation between FEV1 and end-expiratory lung volume (EELV) at maximal exercise (p < 0.03). There was no significant correlation between FEV1 and maximal HR achieved during exercise; moreover, all subjects achieved a maximal HR in excess of 80% predicted, suggesting a cardiovascular limitation to exercise. These data do not support the hypothesis that the lower initial VO2max in the subjects with a reduced FEV1 was due to deconditioning. Although increased EELV at maximal exercise, reduced VO2max and a reduced VO2max response with training are all statistically associated with a reduced FEV1, there is no direct evidence of causality.  相似文献   

14.
Two experiments examined the influences of endurance training and heat acclimation on ratings of perceived exertion (RPE) and thermal discomfort (RTD) during exercise in the heat while wearing two types of clothing. In experiment 1, young men underwent 8 weeks of physical training [60-80% of maximal aerobic power (VO2max) for 30-45 min day-1, 3-4 days week-1 at 20-22 degrees C dry bulb (db) temperature] followed by 6 days of heat acclimation [45-55% VO2max for 60 min day-1 at 40 degrees C db, 30% relative humidity (rh)] (n = 7) or corresponding periods of control observation followed by heat acclimation (n = 9). In experiment 2, young men were heat-acclimated for 6 or 12 days (n = 8 each). Before and after each treatment, subjects completed bouts of treadmill exercise (1.34 m s-1, 2% grade in experiment 1 and 0% grade in experiment 2) in a climatic chamber (40 degrees C db, 30% rh), wearing in turn normal light clothing (continuous exercise at 37-45% VO2max for a tolerated exposure of 116-120 min in experiment 1 and at 31-34% VO2max for 146-150 min in experiment 2) or clothing protective against nuclear, biological, and chemical agents (continuous exercise at 42-51% VO2max for a tolerated exposure of 47-52 min in experiment 1 and intermittent exercise at 23% VO2max for 97-120 min in experiment 2). In experiment 1, when wearing normal clothing, endurance training and/or heat acclimation significantly decreased RPE and/or RTD at a fixed power output. There were concomitant reductions in relative work intensity (% VO2max) [an unchanged oxygen consumption (VO2) but an increased VO2max, or a reduced VO2 with no change of VO2max], rectal temperature (Tre), mean skin temperature (Tsk), and/or heart rate (HR). When wearing protective clothing, in contrast, there were no significant changes in RPE or RTD. Although training and/or acclimation reduced %VO2max or Tre, any added sweat that was secreted did not evaporate through the protective clothing, thus increasing discomfort after training or acclimation. Tolerance times were unchanged in either normal or protective clothing. In experiment 2, when wearing normal clothing, heat acclimation significantly decreased RPE and RTD at a fixed power output, with concomitant reductions in Tre, Tsk, and HR; the response was greater after 12 than after 6 days of acclimation, significantly so for RPE and HR. When wearing protective clothing, the subjects exercised at a lower intensity for a longer duration than in the moderate exercise trial. Given this tactic, either 6 or 12 days of heat acclimation induces significant reductions RPE and/or RTD, accompanied by reductions in Tre, Tsk, and/or HR. Tolerance times in protective clothing were also increased by 11-15% after acclimation, despite some increase of sweat accumulation in the protective clothing. The results suggest that (1) neither endurance training nor heat acclimation reduce psychological strain when protective clothing is worn during vigorous exercise, because increased sweat accumulation adds to discomfort, and (2) in contrast to the experience during more vigorous exercise, heat acclimation is beneficial to the subject wearing protective clothing if the intensity of effort is kept to a level that allows permeation of sweat through the clothing. This condition is likely to be met in most modern industrial applications.  相似文献   

15.
Laboratory and field assessments were made on eighteen male distance runners. Performance data were obtained for distances of 3.2, 9.7, 15, 19.3 km (n = 18) and the marathon (n = 13). Muscle fiber composition expressed as percent of slow twitch fibers (%ST), maximal oxygen consumption (VO2max), running economy (VO2 for a treadmill velocity of 268 m/min), and the VO2 and treadmill velocity corresponding to the onset of plasma lactate accumulation (OPLA) were determined for each subject. %ST (R > or equal to .47), VO2max (r > or equal to .83), running economy (r > or equal to .49), VO2 in ml/kg min corresponding to the OPLA (r > or equal to .91) and the treadmill velocity corresponding to OPLA (r > or equal to .91) were significantly (p < .05) related to performance at all distances. Multiple regression analysis showed that the treadmill velocity corresponding to the OPLA was most closely related to performance and the addition of other factors did not significantly raise the multiple R values suggesting that these other variables may interact with the purpose of keeping plasma lactates low during distance races. The slowest and fastest marathoners ran their marathons 7 and 3 m/min faster than their treadmill velocities corresponding to their OPLA which indicates that this relationship is independent of the competitive level of the runner. Runners appear to set a race pace which allows the utilization of the largest possible VO2 which just avoids the exponential rise in plasma lactate.  相似文献   

16.
Studies assessing changes in maximal aerobic capacity (VO2 max) associated with aging have traditionally employed the ratio of VO2 max to body weight. Log-linear, ordinary least-squares, and weighted least-squares models may avoid some of the inherent weaknesses associated with the use of ratios. In this study we used four different methods to examine the age-associated decline in VO2 max in a cross-sectional sample of 276 healthy men, aged 45-80 yr. Sixty-one of the men were aerobically trained athletes, and the remainder were sedentary. The model that accounted for the largest proportion of variance was a weighted least-squares model that included age, fat-free mass, and an indicator variable denoting exercise training status. The model accounted for 66% of the variance in VO2 max and satisfied all the important general linear model assumptions. The other approaches failed to satisfy one or more of these assumptions. The results indicated that VO2 max declines at the same rate in athletic and sedentary men (0.24 l/min or 9%/decade) and that 35% of this decline (0.08 l . min-1 . decade-1) is due to the age-associated loss of fat-free mass.  相似文献   

17.
The aim of this study was to validate an incremental field test performed by wheelchair-dependent (WD) athletes. Nine male paraplegic subjects (mean age 28.9 +/- 4.2 years) performed an incremental field test (FT) and a comparable laboratory test (LT) with their own usual wheelchairs. Both tests started with an initial speed of 4 km.hr(-1) and increased by increments of 1 km.hr(-1) every minute until volitional exhaustion. The FT was an adapted Léger and Boucher test (ALBT) and was conducted on a 400 m tartan field marked-off every 50 m with pylons. Ventilatory data were collected every 15 s using a portable telemetric system (Cosmed K2, JFB International, Italy). The LT was performed on an adapted treadmill (Sopur, Germany) and ventilatory data were collected every minute using a breath-by-breath automated system (CPX, Medical Graphics, MN, USA). The LT and the FT were not significantly different for duration (8 min 50 +/- 1 min 24 vs 9 min 55 +/- 29 s), percentage of maximal heart rate (HR, 86.2 +/- 3.9 vs 89.7 +/- 5.3%), maximal minute ventilation (VE, 101.6 +/- 28.5 vs 96.8 +/- 28.2 1.min(-1)) and peak oxygen uptake (VO2 peak, 39.7 + 7.3 vs 36.1 + 5.8 ml.kg(-1).min(-1) assessed with the CPX and the K2, respectively. We concluded that the FT proposed in the present study is a valid test for direct VO2 peak assessment in wheelchair athletes using a portable VO2 telemetric system. Nonetheless, the Léger and Mercier model equation did not accurately predict VO2 max and further investigation is needed to determine a valid VO2 max prediction equation for these subjects during the FT.  相似文献   

18.
The study purpose was to compare the effect of exercise training on serum lipid and apolipoprotein concentrations and the activities of intravascular enzymes related to lipid transport in previously untrained eumenorrheic, premenopausal (PRM) women (n = 21; mean age, 36 +/- 3 years) and estrogen-free postmenopausal (POM) women (n = 16; mean age, 68 +/- 8 years). Subjects trained at a progressive intensity and duration (50% to 75% maximal O2 consumption [VO2max], 200 to 300 kcal/session) 4 d/wk for 12 weeks. Before and after training, VO2max, body weight, relative body fat, and fasting blood samples were obtained following 2 weeks on a standardized diet designed to maintain body weight and during the early follicular stage for the PRM group. Blood samples were analyzed for serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), the cholesterol content of the HDL3 subfraction, apolipoprotein (apo)A-I and apoB, lipoprotein(a), and the activity of lecithin:cholesterol acyltransferase (LCAT). Total and hepatic triglyceride lipase activity (HTGLA) were determined from plasma samples obtained after heparin administration. The cholesterol content of the low-density lipoprotein (LDL) and HDL2 subfractions and endothelial-bound lipoprotein lipase activity (LPLA) were calculated. A two (group) x two (time) multivariate ANOVA (MANOVA), with repeated measures for time indicated that the exercise-induced changes in physiological measurements, serum lipid or apolipoprotein concentrations, or enzyme activities did not differ between groups. Serum concentrations of TC, LDL-C, and HDL3 cholesterol, TG, and apo A-I and apoB were higher in POM women compared with the PRM group (P < .05 for all). For the combined groups, body weight and relative body fat did not change with training, but VO2max increased an average of 18.5% (P < .05). LPLA, HTGLA, and LCAT activity were unaltered with exercise training. Except for a small but significant decrease in HDL-C (-5.5%) and an elevation in apoB (4.3%; P < .05 for both), the concentrations of serum lipids and apolipoproteins did not change over the training period. We conclude that in previously untrained women, menopausal status does not influence the exercise training response of serum lipids or apolipoproteins or activities of intravascular enzymes related to lipid transport.  相似文献   

19.
PURPOSE: The purpose of this study was to assess the validity of the 20-m shuttle test with 1-min stages (20-MST) to estimate maximal oxygen uptake (VO2 max) and its ability to register cardiorespiratory modifications over the course of an individualized aerobic training program for mild to moderately asthmatic children acclimatized to moderate altitude. METHODS: Forty-eight asthmatic subjects aged 12 to 17 years performed both a maximal incremental exercise test on a cycle ergometer and the 20-MST. Ten of the subjects were then randomly chosen and trained three times per week at their ventilatory threshold (Vth) intensity level for three months. Another group of ten asthmatic subjects served as control subjects. Training intensity was adjusted monthly; heart rate values at Vth were increased by the same proportion as the increase in Vo2 max as measured by the 20-MST. At the end of training, both groups were again evaluated with the two tests. The Vo2 max values by direct measurement and by the 20-MST were not significantly different for the entire population (46.5 +/- 1.6 vs 47.2 +/- 2.1 ml.min-1.kg-1). In addition, the two test results were in close agreement (r = 0.84; p < 0.01). After training, a sharp improvement in the direct Vo2 max (44.1 +/- 2.4 to 51.2 +/- 1.9 ml.min-1.kg-1) was noted in the training group as well as an increase in the Vth (25.6 +/- 1.9 to 32.1 +/- 3.4 ml.min-1.kg-1), the maximal power (152 +/- 7.1 to 185 +/- 3.8 W), and the maximal oxygen pulse (0.24 +/- 0.007 to 0.27 +/- 0.008 ml.beat-1.kg-1). CONCLUSION: The indirect measure confirmed these results: a simultaneous increase in VO2 max (43.7 +/- 2.5 to 53.8 +/- 2.1 ml.min-1.kg-1), maximal oxygen pulse (0.22 +/- 0.004 to 0.27 +/- 0.006 ml.beat-1.kg-1), and the number of stages completed (7 +/- 1.4 to 10.1 +/- 1.3) was observed. It was concluded that the 20-MST has sufficient validity to assess VO2 max and to register cardiorespiratory modifications over the course of individualized aerobic training programs in mild and moderately asthmatic children. It thus may be used to adjust training intensities during these programs.  相似文献   

20.
The purpose of this study was to examine the influence of body fatness, aerobic and anaerobic ability on 3-km running performance in 19 physically active boys (mean +/- SD, age = 10.4 +/- 0.9 yrs). The sum of six skinfolds, VO2 at 8.04 and 9.65 km.hr-1, and VO2max were measured in the laboratory. Run time for 3 km was assessed twice on separate days on a 200-meter indoor track. Prior to each run, every child performed two 55-meter sprints and two vertical jumps. Mean +/- SD values for the sum of skinfolds, %VO2max at each running speed, VO2max and 3-km run time were: 33.9 +/- 14.9 mm; 70.6 +/- 6.6% and 81.0 +/- 7.9%; 54.6 +/- 5.0 ml.kg-1.min-1; 16.41 +/- 2.58 min, respectively. Significant (p < 0.05) correlations were observed between the following variables and run time: sum of skinfolds (r = 0.72); vertical jump (r = 0.67); sprint time (r = 0.59); VO2max (r = 0.61); and, %VO2max at each treadmill speed (r = 0.79 and r = 0.75, respectively). Stepwise multiple regression analysis indicated that the combination of the %VO2max at 8.04 km.hr-1 and vertical jump accounted for 83% (adjusted R2) of the variance in running time (SEE = 1.06 min, p < 0.05). This study suggests that 3-km run time in physically active boys is influenced by aerobic and anaerobic indices as well as body fatness, supporting the notion that children, compared to adults, are not metabolic specialists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号