首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In accordance with the great importance given to the subject of stiffness degradation, in particular with regard to metal forming, this work experimentally investigates the anisotropic elastic properties of plastically prestrained cold-rolled sheet metal (stainless steel EN 1.4301, also AISI 304). From the experiments performed, two main conclusions regarding stiffness degradation can be extracted. First, since under specific stretching the intensity of the normalized Young’s moduli degradation in both directions remains approximately similar, it may be concluded that the potential initial elastic anisotropy tends to be preserved during loading. Second, as the evidenced stiffness degradation has proved to be strongly correlated with the stretching direction of the sheet metal, it can be concluded that the stiffness evolution in the cold rolled sheet steel is path dependent. These interesting discoveries also provide some answers for modelling the kinetic damage evolution laws in damage mechanics.  相似文献   

2.
3.
Complex (nonlinear) unloading behavior following plastic straining has been reported as a significant challenge to accurate springback prediction. More fundamentally, the nature of the unloading deformation has not been resolved, being variously attributed to nonlinear/reduced modulus elasticity or to inelastic/“microplastic” effects. Unloading-and-reloading experiments following tensile deformation showed that a special component of strain, deemed here “Quasi-Plastic-Elastic” (“QPE”) strain, has four characteristics. (1) It is recoverable, like elastic deformation. (2) It dissipates work, like plastic deformation. (3) It is rate-independent, in the strain rate range 10−4-10−2/s, contrary to some models of anelasticity to which the unloading modulus effect has been attributed. (4) To first order, the evolution of plastic properties occurs during QPE deformation. These characteristics are as expected for a mechanism of dislocation pile-up and relaxation. A consistent, general, continuum constitutive model was derived incorporating elastic, plastic, and QPE deformation. Using some aspects of two-yield-function approaches with unique modifications to incorporate QPE, the model was implemented in a finite element program with parameters determined for dual-phase steel and applied to draw-bend springback. Significant differences were found compared with standard simulations or ones incorporating modulus reduction. The proposed constitutive approach can be used with a variety of elastic and plastic models to treat the nonlinear unloading and reloading of metals consistently for general three-dimensional problems.  相似文献   

4.
Draw-bend springback shows a sudden decline as the applied sheet tension approaches the force to yield the strip. This phenomenon coincides with the appearance of persistent anticlastic curvature, which develops during the forming operation and is maintained during unloading under certain test conditions. In order to understand the mechanics of persistent anticlastic curvature and its dependence on forming conditions, aluminum sheet strips of widths ranging from 12 to 50 mm were draw-bend tested with various sheet tensions and tool radii. Finite element simulations were also carried out, and the simulated and measured springback angle and anticlastic curvature were compared. Analytical methods based on large deformation bending theory for elastic plates were employed to understand the occurrence and persistence of the anticlastic curvature. The results showed that the final shape of a specimen cross-section is determined by a dimensionless parameter, which is a function of sheet width, thickness and radius of the primary curvature in the curled region of an unloaded sample. When the normalized sheet tension approaches 1, this parameter rapidly decreases, and significant anticlastic deflection is retained after unloading. The retained anticlastic curvature greatly increases the moment of inertia for bending, and thus reduces springback angle.  相似文献   

5.
Springback compensation in deep drawing applications   总被引:1,自引:0,他引:1  
This work deals with the problem of springback compensation in sheet metal forming. Satisfactory results can be achieved by performing “die compensation”: the die is modified pretending to obtain a different configuration at the end of the punch stroke, but in order that the final piece coincides with the desired one after the deformation due to springback. Empirical die compensation has nowadays been replaced by numerical simulation, but the inverse problem that needs to be solved is non-trivial since the transformation from the modified geometry of the die and the final piece obtained from it implies a very complex FEM simulation. In this work we set the whole process of springback compensation on solid physical and mathematical grounds. An optimization algorithm based on the Gauss-Newton method is proposed to deliver automatic die compensation and its performance is investigated on some test cases.  相似文献   

6.
Experiments have shown that magnesium alloy sheet a common hexagonal close-packed metal, exhibits mechanical behavior unlike that of sheets made of cubic metals (X.Y. Lou et al., 2007, Int. J. Plasticity, 24, 44). The unique stress–strain response includes a strong asymmetry in the initial yield and subsequent plastic hardening. In other words, the stress–strain curves in tension and compression are significantly different. A proper representation of the constitutive relationships is crucial for the accurate evaluation of springback, which occurs due to the residual moment distribution through the sheet thickness after bending. In this paper, we propose an analytical model for asymmetric elasto-plastic bending under tension followed by elastic unloading in order to evaluate the bending moment, which is equivalent to the springback amount. To simplify the calculations, the experimentally measured stress–strain curve of the magnesium alloy sheet was approximated with discrete linear hardening in each deformation region, and the material properties were characterized according to several simplifying assumptions. The bending moment was calculated analytically using the approximate asymmetric stress–strain relationship up to the prescribed curvature corresponding to the radius of the tool in sheet metal forming operations. A numerical example showed an unusual springback increase, even with an increase in the applied force; this is an unexpected result for conventional symmetric materials. We also compared the calculated springback amounts with the results of physical measurements. This showed that the proposed model predicts the main trends of the springback in magnesium alloy sheets reasonably well considering the simplicity of the analytical approach.  相似文献   

7.
张毅  薛世峰  韩丽美  周博  刘建林  贾朋 《力学学报》2021,53(6):1671-1683
损伤本构模型对研究材料的断裂失效行为有重要意义, 但聚合物材料损伤演化的定量表征实验研究相对匮乏. 通过4种高密度聚乙烯(high density polythylene, HDPE)缺口圆棒试样的单轴拉伸实验获得了各类试样的载荷-位移曲线和真应力-应变曲线, 采用实验和有限元模拟相结合的方法确定了HDPE材料不同应力状态下的本构关系, 并建立了缺口半径与应力三轴度之间的关系;采用两阶段实验法定量描述了4种HDPE试样单轴拉伸过程中的弹性模量变化, 并建立了基于弹性模量衰减的损伤演化方程, 结合中断实验和扫描电子显微镜分析了应力状态对HDPE材料微观结构演化的影响. 结果表明缺口半径越小, 应力三轴度越大, 损伤起始越早、演化越快; 微观表现为: 高应力三轴度促进孔洞的萌生和发展, 但抑制纤维状结构的产生;基于实验和有限元模拟获得的断裂应变、应力三轴度、损伤演化方程等信息提出了一种适用于聚合物的损伤模型参数确定方法, 最后将本文获得的本构关系和损伤模型用于HDPE平板的冲压成形模拟, 模拟结果与实验结果吻合良好.   相似文献   

8.
This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are investigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simulation technique in conjunction with the Latin hypercube sampling method was adopted to study the probabilistic springback. Finite element method based on implicit/explicit algorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler algorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reliability functions based on geometry compensations.  相似文献   

9.
基于韧性耗散模型的损伤定量分析方法   总被引:7,自引:0,他引:7  
胡明敏 《力学季刊》2000,21(3):387-391
材料的静力韧性便于工程测量,对疲劳损伤较其它宏观损伤变量更敏感。本文以材料静力韧性为宏观损伤变量,依据疲劳过程中金属材料韧性随疲劳循环加载而变化的实验结果的规律分析,得到了应力和循环数表达的损伤演化方程和损伤累积模型。该模型能较好地反映加载顺序的影响。推导出该疲劳损伤累积模型在多级加载下的递推公式。经四种金属材料疲劳试验数据验证结果表明,该模型预测疲劳寿命是较为满意的。由于疲劳试验数据分散性大,结果有待进一步验证。  相似文献   

10.
We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.  相似文献   

11.
A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial.  相似文献   

12.
Porous materials, such as geomaterials, exhibit a behaviour dependent on the confining pressure. The aim of this paper is to study the degradation of the elastic stiffness of mean stress dependent materials, due to the deterioration of the microstructure during loading.Continuum damage mechanics offers a framework to model this rigidity deterioration. In addition to the concept of effective stress, a choice has to be made between two widely used hypotheses, the principle of strain equivalence and the principle of equivalent elastic energy, in order to build a complete modelling framework.A mean stress dependent hyperelastic formulation is used to ensure a conservative behaviour, and associated to the two previous damage modelling assumptions, whose effects are compared. This allows for mean stress dependent elasticity to be reproduced, with elastic moduli increasing with mean stress while decreasing with damage.  相似文献   

13.
Finite deformation rigid plastic and elastic–plastic analyses of plane strain pure bending of a plastically anisotropic sheet is presented. An efficient method for finding the exact solution is proposed by extending the previously developed method to the stage of unloading. Using this method the solutions are obtained in closed form or reduced to a numerical treatment of ordinary integrals, or an ordinary differential equation, or transcendental equations. An effect of plastic anisotropy and elastic properties on the bending moment is analyzed. The distribution of residual stresses is illustrated and an effect of material and process parameters on springback is investigated.  相似文献   

14.
The paper provides development of the model of anisotropic damage by microcracking proposed by Bargellini et al. 2006. This model is based on a discrete approach, which introduces a finite set of microcrack densities associated with fixed directions. This approach avoids inconveniences encountered when using a single second order tensor damage variable D (non uniqueness of the free energy) and strain decomposition into positive and negative parts (spurious dissipation at crack closure). Frictional sliding on closed microcracks is introduced as an additional dissipative mechanism; it is represented by a second order sliding variable in each damage direction. Corresponding sliding criteria and non-associated sliding evolution laws, formulated in the strain space for the model coherence, permit to account for hysteretic phenomena. Unilateral effect is taken into account; Young's and shear moduli are correctly restored at microcrack closure. The crucial requirements of continuity of the energy and of stress–strain response are ensured through relevant conditions on parameters and sliding variables values at opening-closure. The discrete approach, associated with some hypotheses concerning damage evolution, permits to couple damage and dissipative sliding. The pertinence of the proposed theory is illustrated by simulating first elastic properties at constant damage, then by considering a specific loading path involving both damage and friction evolutions.  相似文献   

15.
This research describes a nondestructive method for the quantitative estimation of property variations due to damage in metal materials. The method employs a damage mechanics model, which accounts for stiffness degradation and damage evolution of a metal medium with a measurement of ultrasonic velocity. In order to describe the progressive deterioration of materials prior to the initiation of macrocracks, we have developed a new damage mechanics model. Thereafter, a finite element model valid for numerically describing such damage process has been developed by ABAQUS/Standard code, and correlations between damage state, elastic stiffness and plastic strain could be found by the results of the finite element simulation. The property variations due to damage evolution are calculated based on the Mori–Tanaka theory, and then the ultrasonic velocity can be predicted by Christoffel’s equation. When the measured velocity is coupled with the theoretically predicted velocity, the unknown damage variable is solved, from which other residual properties are determined by the predictions of damage model. The proposed technique is performed on type 304 stainless steel bars. The numerical results obtained by the simulation were compared with experimental ones in order to verify the validity of the proposed finite element model and good agreement was found. It is shown that the damaged properties of metals can be estimated accurately by the proposed method.  相似文献   

16.
A variational approach to determine the deformation of an ideally plastic substance is proposed by solving a sequence of energy minimization problems under proper conditions to account for the irreversible character of plasticity. The flow is driven by the local transformation of elastic strain energy into plastic work on slip surfaces, once that a certain energetic barrier for slip activation has been overcome. The distinction of the elastic strain energy into spherical and deviatoric parts is used to incorporate in the model the idea of von Mises plasticity and isochoric plastic strain. This is a “phase field model” because the matching condition at the slip interfaces is substituted by the evolution of an auxiliary phase field that, similar to a damage field, is unitary on the elastic phase and null on the yielded phase. The slip lines diffuse in bands, whose width depends upon a material length-scale parameter.Numerical experiments on representative problems in plane strain give solutions with noteworthy similarities with the results from classical slip-line field theory, but the proposed model is much richer because, accounting for elastic deformations, it can describe the formation of slip bands at the local level, which can nucleate, propagate, widen and diffuse by varying the boundary conditions. In particular, the solution for a long pipe under internal pressure is very different from the one obtainable from the classical macroscopic theory of plasticity. For this case, the location of the plastic bands may be an insight to explain the premature failures that are sometimes encountered during the manufacturing process. This practical example enhances the importance of this new theory based on the mathematical sciences.  相似文献   

17.
18.
In this paper the method of damage measurement of metal structure at the creep is proposed. In contrast to other methods, it allows the measurement of this damage to be carried out in the process of creep test without unloading and cooling of specimens. Experimental damage curves during creep are obtained as a result of test data processing by the suggested method. The analysis of these curves leads to a conclusion that the material damage at repture is monotonically decreasing function of the applied stress. This conclusion is an experimental verification of the theoretical result, obtained earlier. Visiting scholar (1988–1989) at South China University of Technology  相似文献   

19.
一种新的结构损伤识别试验方法研究   总被引:1,自引:0,他引:1  
陈淮  李静斌  殷学纲 《实验力学》2011,26(1):96-102
提出在构件上增设附加质量来模拟结构损伤的试验方法,证明了质量增加与刚度降低的等价关系.以简支梁为例,给出了采用附加沙袋法、悬挂质量法两种附加质量方式模拟结构损伤的具体试验方案,完成了多工况下简支梁附加质量模拟结构损伤的动测试验.通过试验验证了本文所提方法的正确性,得出了在梁构件上采用附加沙袋法可准确模拟出不同损伤位置、...  相似文献   

20.
非线性弹性卸载对回弹预测的影响   总被引:2,自引:0,他引:2  
 将弹性模量的变化引入了回弹的计算. 因为其代表性,本文针 对V型弯曲,考查了非线性弹性卸载对回弹预测的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号