首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
选取赣南脐橙果园土壤作为研究对象,探讨在4 000~7 500 cm-1范围内的光谱分析土壤全氮和有机质的可行性。采集的近红外光谱采用多元散射校正、一阶微分、二阶微分、七点平滑等多种预处理对比分析,分别建立了有机质和全氮含量偏最小二乘模型。实验得出全氮预测模型在4 000~7 500 cm-1范围内采用七点平滑(SG)进行预处理模型较为理想,校正集相关系数(rc)为0.802,校正均方根误差(RMSEC)为2.754,预测集相关系数(rp)为0.715,预测均方根误差(RMSEP)为3.077;有机质预测模型在4 000~7 500 cm-1范围内采用标准正态变量变换(SNV)预处理模型较为理想,rc为0.848,RMSEC为0.128,rp为0.790,RMSEP为0.152。研究表明近红外漫反射光谱可快速用于赣南脐橙果园的土壤中全氮和有机质含量的快速检测。  相似文献   

2.
果皮对脐橙可溶性固形物可见/近红外检测精度的影响   总被引:3,自引:0,他引:3  
利用可见/近红外半透射光谱技术对未剥皮(完整)和剥皮脐橙的可溶性固形物(SSC)进行检测,探索果皮对脐橙SSC检测精度的影响。采用QualitySpec型光谱仪获取未剥皮和剥皮脐橙在350~1 000 nm波段的可见/近红外光谱,并从光谱和模型性能两方面分析果皮的影响。对未剥皮和剥皮脐橙平均光谱进行比较,并提取前20个主成分进行多元方差分析;应用偏最小二乘(PLS)回归结合不同预处理方法分别建立未剥皮和剥皮脐橙SSC的预测模型,对预测模型性能进行比较,并对预测集样本的预测残差平方进行方差分析。结果表明,在5%置信水平下,果皮对脐橙SSC检测精度的影响是显著的。未剥皮和剥皮脐橙SSC的最优PLS模型的预测集相关系数和预测均方根误差分别为0.888,0.456%和0.944,0.324%。  相似文献   

3.
近红外光谱小波分析在土壤参数预测中的应用   总被引:5,自引:0,他引:5  
从田间采集了150个田间土壤样本,在分析了所有样本的土壤参数统计特征之后,对原始近红外光谱数据进行了聚类分析,分别得到了50个土壤全氮和50个土壤有机质的等价样本及其对应光谱。对样本光谱曲线进行8层Biorthogonal小波包分解,分解得到的最低低频[80]结点对应着土壤水分以及土壤质地的光谱变化趋势,最高高频[8 255]结点对应着土壤粒度、光谱仪精度等引起的高频震荡。对以上两个结点进行重构并从样本光谱曲线中剔除以上影响成分,得到了对应的土壤参数特征光谱。基于特征光谱建立了土壤参数偏最小二乘回归模型:全氮偏最小二乘预测模型的预测系数rc达到了0.960,验证系数rv达到了0.920;有机质偏最小二乘预测模型的预测系数rc达到0.922,验证系数rv达到0.883。模型精度明显提高,满足实际生产的需要。  相似文献   

4.
可溶性固形物(SSC)是脐橙重要内部品质之一。采用QualitySpec型光谱仪在350~1000 nm波段范围采集脐橙的可见/近红外漫透射光谱,采用CARS(competitive adaptive reweighted sampling)变量选择方法筛选出与脐橙SSC相关的重要变量,并与无信息变量消除(UVE)及连续投影算法(SPA)比较。最后,对选择的38个重要波长变量应用偏最小二乘(PLS)回归建立脐橙SSC预测模型,并对未参与建模的75个样品进行预测。研究结果表明,CARS方法优于UVE及SPA变量选择方法,能有效地筛选出重要波长变量。CARS-PLS建立的SSC预测模型优于全光谱的PLS模型,其校正集及预测集的相关系数分别为0.948和0.917,均方根误差分别为0.347%和0.394%。因此,可见/近红外漫透射光谱结合CARS方法可以预测脐橙可溶性固形物,CARS变量选择方法能有效简化预测模型和提高模型的预测精度。  相似文献   

5.
采用高光谱成像技术结合不同的特征提取方法,实现了对草莓可溶性固形物含量的检测。通过提取154颗成熟无损伤草莓的高光谱图像的874~1 734 nm范围光谱信息,对941~1 612 nm光谱采用移动平均法(moving average,MA)进行预处理。基于残差法剔除19个异常样本后将剩余135个样本分为建模集(n=90)和预测集(n=45)。采用连续投影算法(successive projections algorithm, SPA),遗传偏最小二乘算法(genetic algorithm-partial least squares, GAPLS)结合连续投影算法(GAPLS-SPA),加权回归系数(weighted regression coefficient, Bw)以及CARS法(competitive adaptive reweighted sampling)选择特征波长分别提取14,17,24与25个特征波长,并采用主成分分析(principal component analysis, PCA)与小波变换(wavelet transform, WT)分别提取20与58个特征信息。分别基于全波段光谱、特征波长与特征信息建立PLS模型。所有模型都取得了较好的效果,基于全波段光谱的PLS模型与基于WT提取的特征信息的PLS模型的效果最优,建模集相关系数(rc)与预测集相关系数(rp)均高于0.9。结果表明高光谱成像技术结合特征提取方法可用于草莓可溶性固形物含量的检测。  相似文献   

6.
西瓜可溶性固形物含量的无损检测对提升其内部品质十分重要。为实现近红外光谱对小型西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对预测模型的影响,以“京秀”西瓜为研究对象,分别采集赤道、瓜脐和瓜梗三部位的漫透射光谱信息,利用偏最小二乘算法(PLS)建立并比较单一检测部位和混合所有检测部位的西瓜可溶性固形物近红外光谱预测模型,并分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对西瓜可溶性固形物近红外光谱变量进行特征波长筛选。结果显示,相比于单一检测部位的模型,混合所有检测部位的校正集样本建立的模型取得了较优的预测结果。同时,利用CARS算法筛选的42个特征波长变量建模,对三种检测部位预测集样本的预测结果分别为赤道RP=0.892和RMSEP= 0.684 °Brix,瓜脐RP=0.905和RMSEP= 0.629 °Brix,瓜梗RP=0.899和RMSEP= 0.721 °Brix。模型得到了很大的简化,且预测精度较高。比较发现,利用SPA算法筛选的19个特征波长变量所建模型的预测精度较低。利用三种检测部位的西瓜样本建立的PLS混合预测模型,结合CARS算法进行有效特征波长变量筛选,可提高西瓜可溶性固形物预测模型的精度,实现西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对近红外光谱预测模型的影响。结果为今后开发便携式设备检测西瓜表面各部位可溶性固形含量提供参考依据。  相似文献   

7.
由于高光谱数据量大、维数高,光谱噪声明显、散射严重等特征导致光谱建模时关键变量提取较为困难,同时,高光谱图像的获取会受非单色光、杂散光、温度等多种因素的影响,从而使高光谱数据与待测性质之间有一定非线性关系。为此,提出采用正自适应加权算法(CARS)对可见-近红外高光谱高维数据进行关键变量筛选,并与全光谱和经典变量提取方法SPA,MC-UVE,GA和GA-SPA方法进行比较。以200个库尔勒香梨为研究对象,采用SPXY方法将样本划分为校正集和预测集,校正集和预测集分别包含150个和50个样本。基于不同方法筛选的变量,分别建立线性PLS模型及非线性LS-SVM模型,r2,RMSEP和RPD用于模型性能的评估。综合比较发现,GA,GA-SPA和CARS变量筛选方法能够有效地筛选出原始高光谱数据中具有强信息且对外界影响因素不敏感的变量,适用于高光谱数据关键变量的提取,其中CARS变量筛选效果最佳,基于CARS获取的关键变量构建的非线性LS-SVM库尔勒香梨SSC含量预测模型获得了最优的预测结果,r2pre,RMSEP和RPD分别为0.851 2,0.291 3和2.592 4。研究表明,CARS方法是一种有效的高光谱关键变量筛选方法,利用高光谱数据,非线性LS-SVM模型比线性PLS模型更适合于香梨品质的定量预测。  相似文献   

8.
利用可见-近红外光谱技术联合变量选择新方法对南丰蜜桔的可溶性固形物(SSC)进行快速无损检测研究,以简化南丰蜜桔SSC预测模型和提高预测模型性能。试验共采用300个南丰蜜桔样本,校正集、验证集及预测集样本分别为150,75和75个。采用QualitySpec型光谱仪在350~1 000 nm波段范围内采集样本光谱,利用无信息变量消除(UVE)剔除无用信息波长变量,再采用独立成分分析(ICA)提取光谱的独立成分,最后应用最小二乘支持向量机(LS-SVM)建立南丰蜜桔的SSC预测模型,并利用未参与建模的预测集样本对模型进行评价。研究结果表明,可见-近红外光谱技术联合UVE-ICA- LS-SVM对南丰蜜桔的SSC检测精度高。UVE-ICA可以有效剔除无用信息波长变量,提取特征光谱信息,简化预测模型及提高预测模型性能。UVE-ICA- LS-SVM所建立的南丰蜜桔SSC预测模型性能优于PLS,PCA-LS-SVM及ICA-LS-SVM预测模型,其校正集、验证集及预测集的决定系数和均方根误差分别为0.978,0.230%,0.965,0.301%及0.967,0.292%。  相似文献   

9.
采用紫外可见(ultraviolet/visible, UV-Vis)光谱技术和近红外(near-infrared, NIR)光谱技术及信息融合技术对乙醇汽油中乙醇含量进行了检测。首先采用组合区间偏最小二乘(synergy interval PLS, SiPLS)算法作为特征提取方法,分别建立了基于UV-Vis和NIR光谱的偏最小二乘(PLS)回归模型;再根据油品的实际情况,运用信息融合理论将UV-Vis和NIR光谱信息进行融合,建立了数据级融合(low level data fusion, LLDF)和特征级融合(mid-level data fusion, MLDF)模型,并与单谱源模型效果进行了比较,确定了最优模型为数据级融合后再进行矢量归一化的模型(LLDF-VN1);最后分别用高乙醇含量样品和市售汽油样品的光谱数据对该最优模型进行了通用性检验。结果表明:UV-Vis和NIR光谱数据单独建模均能很好的检测并提供较好的预测结果;而UV-Vis和NIR光谱数据直接融合在基于校正集的回归模型中效果最好,其校正集相关系数rc=0.999 9,校正集交叉验证均方差RMSECV=0.125 8,校正集整体评价偏差Biasc=0.000 6;而采用数据级融合后再进行矢量归一化的模型(LLDF-VN1)的预测效果为最佳,其rp=0.999 1, RMSEP=0.352 7, Biasp=-0.073 8;自配溶液对最优模型(LLDF-VN1)的通用性验证中,rp=0.999 7, RMSEP=0.329 1, Biasp=0.102 2;市售汽油对最优模型(LLDF-VN1)的通用性验证中,rp=0.990 1, RMSEP=0.892 7, Biasp=0.675 1。实验结果说明通过将UV-Vis和NIR光谱信息进行数据级融合可以快速、准确的检测出乙醇汽油中乙醇的含量,并能实现乙醇浓度的宽范围检测,为进一步实现混合油品中物质的快速检测奠定了基础。  相似文献   

10.
木材不同切面的近红外光谱信息与密度快速预测   总被引:12,自引:3,他引:9  
用近红外光谱对木材密度进行了研究。发现木材三个不同切面(横切面、径切面、弦切面)的近红外光谱有较大的差异;结合偏最小二乘法(PLS),根据三个切面采集到的光谱数据与木材密度建立了校正模型,横切面预测集的相关系数r为0.94,径切面和弦切面分别为0.85和0.81。结果表明,从横切面采集到的光谱建立的预测模型效果最好。用该模型对随机抽取、未参与建模的15个样品的密度进行了预测,r2=0.977, 标准偏差:STDEV=0.006。  相似文献   

11.
针对目前模型传递方法研究大多在不同仪器之间且均采用近红外光谱建立模型,采用高光谱技术建立猪肉pH值定量检测模型,并针对不同品种间的模型传递提出了一种光谱和预测值同步校正(sync correction of spectrum and prediction value, CSPV)的传递算法,并与模型更新方法进行比较。当模型满足预测相关系数(correlation coefficient of prediction, rp)rp≥0.837,且剩余预测偏差(residual prediction deviation, RPD)RPD≥1.9时,表明预测结果可靠。以杜长大、茂佳山黑猪和零号土猪3个品种猪肉样品为研究对象,以杜长大作为主品种,茂佳山黑猪和零号土猪作为从品种,采用偏最小二乘(partial least squares regression, PLS)法建立主品种猪肉pH值定量检测模型,模型校正相关系数(correlation coefficient of cross-validation rc)和预测相关系数rp分别达到0.922和0.904,交互验证均方根误差(root mean squared error of cross validation, RMSECV) 和预测均方根误差(root mean squared error of prediction, RMSEP)分别为0.045和0.046,RPD为2.380。用主模型分别对茂佳山黑猪和零号土猪pH值进行预测,rp仅达到0.770和0.731,RMSEP分别为0.111和0.209,RPD分别为1.533和1.234,预测精度较差。分别采用CSPV传递算法和模型更新方法对主模型进行传递和修正,比较并验证了两种方法的模型传递和修正结果。采用CSPV算法对模型传递后,当标样个数分别为9个和10个时,rp可提高到0.889和0.900,RPD提高到2.071和2.213,均满足rp≥0.837,且RPD≥1.9;而采用模型更新方法对模型修正后,当添加的代表性样品分别为11个和9个时,rp分别达到0.869和0.845,但RPD仅达到1.934和1.804,不满足RPD≥1.9的条件。结果表明,CSPV传递算法能实现主模型对茂佳山黑猪和零号土猪样品的预测,而模型更新方法只能实现对茂佳山黑猪品种的预测,不能实现对零号土猪样品的预测,且CSPV传递算法预测结果优于模型更新方法。  相似文献   

12.
表面增强拉曼光谱法快速检测脐橙果肉中三唑磷农药残留   总被引:5,自引:0,他引:5  
采用表面增强拉曼光谱技术结合快速溶剂前处理方法检测脐橙果肉中三唑磷农药残留,应用化学计量学方法建立脐橙果肉中三唑磷农药残留的快速检测模型。以脐橙果肉提取液为基质,采用N-丙基乙二胺、C18和石墨化碳去除果肉中有机酸、色素等荧光物质,配制不同浓度的三唑磷农药溶液,应用不同预处理方法对光谱信号进行预处理,建立偏最小二乘模型。结果表明,以脐橙果肉提取液为基质的三唑磷溶液最低检测浓度低于0.5mg·L-1;归一化预处理后建立的模型预测性能最好,模型对预测集样本的均方根误差为1.38 mg·L-1,相关系数为0.976 6,相对分析误差为(RPD)4.66。预测回收率为95.97%~103.18%,相对误差绝对值在5%以下,表明模型具有较好的预测效果。对4个未知浓度样本进行配对t检验,预测值与真实值无显著差异,说明所建立的方法准确可靠。  相似文献   

13.
近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定   总被引:3,自引:0,他引:3  
高光谱数据量大、 维数高且原始光谱噪声明显、 散射严重等特征导致光谱建模时关键波长变量提取困难。 基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。 鸭梨作为研究对象。 采用决定系数r2、 预测均方根误差RMSEP和验证集标准偏差和预测集标准偏差的比值RPD值进行模型性能评估。 基于选择的关键变量建立PLS模型(CARS-PLS)与全光谱变量建立的PLS模型进行比较发现CARS-PLS模型仅仅使用原始变量中15.6%的信息获得了比全变量PLS模型更好的鸭梨SSC含量预测结果,r2pre,RMSEP和RPD分别为0.908 2,0.312 0和3.300 5。 进一步与基于蒙特卡罗无信息变量MC-UVE和遗传算法(GA)获得的特征变量建立的PLS模型比较发现,CARS不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,该方法能够有效地用于高光谱数据变量的选择。 结果表明,近红外高光谱技术结合CARS-PLS模型能够用于鸭梨可溶性固形物SSC含量的定量预测。 从而为基于近红外高光谱技术预测水果内部品质的研究提供了参考。  相似文献   

14.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究   总被引:4,自引:1,他引:3  
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法。以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型。实验结果为: 在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791。实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性。  相似文献   

15.
以注射用头孢他啶通用性定量分析模型为例,通过对新的预测样本光谱与原模型训练集光谱相似性的研究,寻找更为合理的用于判断模型更新的指标以及模型更新的一般方法。对注射用头孢他啶新的待测样品,首先使用聚类分析的方法将所有样品分成5类,依次加入每一类中代表性光谱到原模型中进行模型更新,计算模型更新前后的平均预测偏差,并以此作为评判模型更新是否有效的标准。同时以相似系数为指标探讨模型更新的一般方法。再应用注射用头孢他啶通用性定量分析模型(包括头孢他啶、水分及精氨酸的定量分析模型)以及新的预测样品对该方法进行验证。实验数据证明当新样本光谱与原模型训练集样本的平均光谱在原模型建模谱段上的相似系数(rT)小于96.5%时,模型需要更新。使用上述判断指标对含碳酸钠为助溶剂的样品进行模型更新后,预测头孢他啶含量的平均偏差由8.1%变为2.3%,预测水分含量的平均偏差由2.2%变为0.3%;对含精氨酸为助溶剂样品,预测头孢他啶含量的平均偏差由7.0%变为1.9%,预测水分含量的平均偏差由0.6%变为0.3%,预测精氨酸含量的平均偏差由2.3%变为0.4%。经过更新的模型能够用于分析国内市场上常见的注射用头孢他啶中头孢他啶、水分及精氨酸含量。以rT作为模型更新指标较为合理,必要时可以参考新预测样品光谱与原模型训练集光谱的PCA得分图进行判断,该模型更新方法具有一定的普适性,rT=96.5%可以初步作为判断模型是否需要更新的阈值。  相似文献   

16.
水果货架期是影响水果品质的重要因素之一,快速无损检测货架期是消费者、食品加工企业日益关心的问题,为了探讨水果不同货架期的预测判别方法的可行性,以不同货架期脐橙为实验样品,运用高光谱成像技术并结合化学计量学方法对不同货架期脐橙进行了预测判别。分别采集脐橙货架期第0天、第7天、14天后的脐橙样本高光谱图像,并进行高光谱图像校正。从光谱角度,提取脐橙样本的平均光谱,每条光谱有176个波长点;从图像角度,先提取脐橙样本的RGB和HSI颜色空间中R,G,B,H,S和I特征值,得到6个分量的均值,然后提取灰度共生矩阵的能量、熵、对比度、逆差矩、相关性的5个图像纹理信息,一共11个图像特征值,并将图像特征进行归一化处理;结合光谱和图像信息,即176个原始光谱和11个图像信息一共187个特征值。利用光谱信息、图像信息、光谱和图像融合信息进行建模,分别建立偏最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型。当原始176个光谱变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为5.33%。当11个图像特征变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率较高为20%。当原始176个光谱变量和11个图像特征变量的融合特征作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为1.33%。实验结果表明,以光谱和图像融合信息建立LS-SVM模型效果最优,提高了对不同货架期脐橙识别的正确率,可实现对不同货架期的脐橙准确有效分类识别,误判率为1.33%。利用高光谱成像技术对不同货架期脐橙进行快速判别,对消费者购买新鲜水果和水果深加工企业具有一定程度的理论指导,也为后期相关仪器研发奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号