首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用十八烷基三甲基溴化铵(OTAB)改性的氮化硼(BN)微粒和石墨烯纳米片(GNP)为导热填料,制备了系列环氧树脂(EP)/改性BN(BNOTAB)/GNP导热绝缘复合材料,研究了填料的种类和含量对复合材料导热性能、电绝缘性能及热稳定性能的影响。结果表明,经OTAB改性后的BN微粒能比较均匀分散于环氧树脂体系中;当m(BNOTAB)/m(GNP)=6∶4时(填料总含量为10%),复合材料的热导率达到0.48 W/(m·K),较纯环氧树脂材料提高了108.7%,而该复合材料仍保持优异的绝缘性能;TGA与DSC结果显示,BNOTAB/GNP填充微粒的加入可以提高环氧树脂复合材料的热稳定性。  相似文献   

2.
3.
用乙二胺将氧化石墨烯还原,经过冷冻干燥得到质轻的多孔石墨烯气凝胶,再用热固性树脂材料在恒温箱中真空浇筑浸渍石墨烯气凝胶,得到石墨烯/环氧树脂复合材料。力学性能测试表明,石墨烯/环氧树脂复合材料断裂韧性相比纯树脂材料显著提高,且石墨烯含量在0~0.70%(质量分数)范围内,韧性随含量升高而增加;含量超过0.70%(质量分数),韧性由于石墨烯的团聚作用而下降,因此可知石墨烯的最佳含量为0.70%(质量分数)。SEM断面分析可知,石墨烯的加入使得材料裂纹的路径和断面在扩展过程中增加,导致新裂纹所需的表面能和塑性变形能显著增加,从而从微观上解释了石墨烯的存在及其含量值对石墨烯/环氧树脂复合材料韧性的影响机理。  相似文献   

4.
石墨烯是一种具有超强的机械强度、高导热率、高透光率、高比表面积等特点的新型二维碳材料,其优良特性使其在高性能电子器件、复合材料、气体传感器及能量存储等领域有着广泛的应用前景,尤其是其超高的热导率引起了国内外学者的极大兴趣。介绍了石墨烯热导率的测量原理及测量方法,综述了石墨烯热导率预测模型及模拟分析,阐述了石墨烯强化复合材料的传热特性。最后对石墨烯热导率未来的研究方向进行了展望。  相似文献   

5.
孙一凡  方健 《包装工程》2021,42(19):12-18
目的 制备MPCMs/环氧树脂复合材料,研究石蜡相变微胶囊(MPCMs)对环氧树脂导热调温性能的影响.方法 采用共混法制备MPCMs/环氧树脂复合材料,对共混改性的复合材料进行导热、储热、调温及热稳定性能表征.结果 MPCMs/环氧树脂复合材料导热系数增大,为原来的4.91倍以上,相变潜热特性与MPCMs的质量分数成正比,有自我调节温度能力.结论 MPCMs/环氧树脂复合材料提高了环氧树脂的导热性能,保留了MPCMs的相变储热调温性能,热稳定性良好.  相似文献   

6.
宋洪松  杨程  刘大博 《功能材料》2012,43(9):1185-1188
通过Staudenmaier法制备了完全氧化的氧化石墨(GO),并通过高温热膨胀制备了单层石墨烯(graphene)。用FT-IR和TG对GO的氧化程度、含氧官能团进行了表征,用SEM和TEM对天然石墨(NG)、GO和graphene的微观结构进行了分析。利用超声共混法制备了graphene/环氧树脂介电纳米复合材料,介电性能的测试表明,graphene的加入使环氧树脂介电常数大幅提高,当graphene添加量为0.25%(质量分数)时,材料介电常数达到25,是纯环氧树脂的4倍,介电损耗0.11。这为石墨烯在介电储能方面的应用和低成本介电复合材料的制备提供了新思路。  相似文献   

7.
采用天然巴沙木作为原材料,进行选择性刻蚀,得到三维层状结构的木头海绵。以木头海绵为模板,在负载一定比例的还原氧化石墨烯(rGO)与石墨烯纳米片(GNP)后,通过真空浸渍的方法与环氧树脂复合并固化,制备得到石墨烯-木头海绵(G-WS)/环氧树脂复合材料。结果表明:采用真空浸渍的方法,能够成功使氧化石墨烯(GO)在水热还原的同时,带动GNP负载到木头海绵表面,同时GO被还原成为rGO,经过与环氧树脂复合后,在环氧树脂内部,G-WS仍然保持良好的三维结构,这种取向分层结构使复合材料具有导热的各向异性,三维连通的结构也为良好的热导率奠定了基础。当填料质量分数为1.45%时,沿取向结构方向的热导率能够达到1.59 W·m-1·K-1,相比于纯环氧树脂而言,热导率提升率高达457%。同时由于木头海绵内部层状的结构,赋予了G-WS良好的压缩回弹性能,能够实现80%压缩以及40%形变压缩,循环100次但不发生明显形变。  相似文献   

8.
采用热重-差热分析仪研究玻璃纤维/环氧树脂复合材料在空气及氮气氛围下不同升温速率的热解特性规律。结果表明,在空气气氛下,热解分为两个阶段;氮气气氛下,热解只存在一个热分解阶段,与空气气氛相比热解初始分解温度较高,热解温度范围变窄,失重速率明显变大。在两种气氛下,玻璃纤维均不参与热解。随着升温速率的增加,热解反应各阶段的起始温度、终止温度、最大失重速率温度均向高温方向移动,热解温度范围大小都基本保持不变。氮气气氛下使用Kissinger法、FWO法和Starink法计算出玻璃纤维环氧树脂的平均表观活化能分别为106.42、123.09和119.48kJ/mol。复合材料活化能随转化率的增加而升高,表观活化能保持在一定数值范围内且数值相近,热解反应比较稳定,具有较低A值,表明其具有较强的热稳定性。  相似文献   

9.
分别通过超声共混法和原位还原法制备了石墨烯/环氧树脂复合材料。利用X射线光电子能谱(XPS)、X射线衍射(XRD)、光学显微镜和扫描电子显微镜(SEM)对复合材料的结构进行了表征,并对其力学性能进行了测试。结果表明,原位还原法制备的石墨烯/环氧树脂复合材料中,氧化石墨烯已经被成功地还原为石墨烯,并且石墨烯具有良好的分散性。力学性能测试结果表明,两种方法制备的复合材料的力学强度较纯环氧树脂明显提高。当石墨烯的量为m(GO)/m(EP)=0.3/100时,超声混合法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约29.2%和1.4%;而原位还原法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约40.5%和9.4%。  相似文献   

10.
石墨烯/环氧树脂复合材料的制备与力学性能   总被引:1,自引:0,他引:1  
通过对氧化石墨热膨胀还原并用超声分散制备了石墨烯,并对所得产物进行分析表征。用超声分散和模具浇注成型法制备了石墨烯/环氧树脂纳米复合材料。研究了石墨烯含量对石墨烯/环氧树脂复合材料力学性能和断面形貌的影响,分析了石墨烯对环氧树脂的增强机理。结果表明,随着石墨烯含量的增加,石墨烯/环氧树脂复合材料的拉伸强度及模量先增加后减小;当石墨烯的质量分数为0.1%时,复合材料的拉伸强度达到最大值60.9MPa,比纯环氧树脂提高了16.88%;当石墨烯的质量分数为0.5%时,复合材料的拉伸模量达到最大值2833.3MPa,比纯环氧树脂提高了48.29%。  相似文献   

11.
三维网状石墨烯/环氧树脂热界面复合材料由于具有良好的热导性能和力学性能,而被广泛应用于微电子器件领域。但是通过化学剥离-还原法制备石墨烯,在填加石墨烯质量分数相同的条件下,石墨烯/环氧树脂热界面复合材料的热导率差别仍然很大。研究发现这主要是由于石墨烯表面官能团含量不同所导致的,因此很难建立统一的标准评估石墨烯作为导热填料的作用效果。为了避免表面官能团对石墨烯/环氧树脂复合物热导率的影响,本研究小组采用化学气相沉积法制备的三维网状石墨烯作为导热填料,对环氧树脂进行修饰,制备了一系列石墨烯/环氧树脂材料。通过研究三维网状石墨烯含量对石墨烯/环氧树脂材料热导率、力学性能及热导率在高温条件下稳定性的影响,有助于完善石墨烯修饰的环氧树脂热界面复合材料的研究,并建立石墨烯作为导热填料的评价体系。  相似文献   

12.
采用四针状氧化锌晶须(ZnOw)和石墨烯纳米片(GNP)改性氰酸酯树脂(CE)制备了系列导热绝缘复合材料,研究了填料的种类和用量对氰酸酯复合材料导热、绝缘及热稳定性能的影响。当树脂基体中加入50%ZnOw或10%GNP时,复合材料的热导率分别达到0.77和0.97 W/(m·K),较纯树脂基体材料分别提高了185%和259%。将ZnOw与GNP混合填充氰酸酯树脂则更有利于提高复合材料的导热性能,当树脂基体中加入40%ZnOw和10%GNP混合填料时,复合材料的热导率可达到1.54 W/(m·K),较纯树脂基体材料提高了470%,并且该复合材料仍能够保持良好的电绝缘性能。TGA结果表明,石墨烯纳米片和氧化锌晶须的加入可以明显提高氰酸酯树脂复合材料的热稳定性。  相似文献   

13.
氧化石墨烯(GO)和纳米氧化锌(ZnO)具有优异的性能,但在环氧树脂中容易出现团聚现象,为解决这一问题,必须对其进行表面改性。以七水合硫酸锌为原料,将ZnO负载到GO表面,通过FT-IR,XRD,SEM,EDS,TG和接触角测试,纳米ZnO均匀分散在GO基体上,并可以在不改变GO片层结构的条件下,改善GO的团聚问题的同时降低GO的亲水性。然后将ZnO负载GO与环氧树脂制备纳米ZnO负载GO/环氧复合材料。结果表明:纳米ZnO负载GO/环氧复合材料力学性能和热稳定性明显提高,当ZnO/GO加入量为0.250%(质量分数)时复合材料综合性能最佳,拉伸强度、拉伸模量、断裂伸长率和冲击强度分别比纯环氧树脂提高了99.87%,12.09%,98.35%和151.48%,吸水率比纯环氧树脂降低了81.48%。  相似文献   

14.
通过H2SO4/HNO3混酸酸化石墨烯,并用硅烷偶联剂KH-560接枝酸化的石墨烯,然后将处理好的石墨烯均匀的分散在环氧树脂中,制备高性能的环氧树脂/碳纤维复合材料。通过红外光谱(FTIR)、热失重(TG)、透射电子显微镜(TEM)等分析方法对处理的石墨烯的表面官能团及表面形貌进行表征,用DCW-7拉伸试验机对所制得的复合材料进行测量。结果表明:酸化的石墨烯表面成功地接枝上了一定量的硅烷偶联剂KH-560,在树脂体系中添加2%的硅烷偶联剂KH-560处理的石墨烯的复合材料的拉伸强度提高了10.7%,断裂强力提高了10.4%。  相似文献   

15.
以环氧树脂为代表的高分子聚合物在电子设备、电子封装和航空航天领域中有着广泛的用途,但环氧树脂极低的热导率限制了其应用。本文以泡沫氧化铝为骨架,在其表面负载氧化石墨烯, 600~1 000℃温度下,对氧化石墨烯进行热还原,制备不同浓度的石墨烯负载的泡沫氧化铝,进一步与环氧树脂复合,得到复合材料。对泡沫氧化铝陶瓷所负载的石墨烯进行了XRD、Raman、SEM表征,对复合材料的热导率和电导率进行了测试。结果表明:热还原温度越高,氧化铝泡孔表面的氧化石墨烯被还原越充分。由于泡孔氧化铝的互相联通的管道,提供了声子传输的通道,0.533%负载量石墨烯就可以使复合材料的热导率达到了2.11 W/m·K,电导率达到了45 S/m。  相似文献   

16.
以三维结构的石墨烯气凝胶为填料,通过真空浸渍的方法,将环氧树脂浸入并固化,制备石墨烯气凝胶/环氧树脂复合材料.利用FT-IR,XPS和XRD等测试手段,研究制备过程和炭化处理中石墨烯气凝胶的化学结构变化.实验结果表明:氧化石墨烯和聚酰胺酸,通过物理吸附的方式,形成石墨烯气凝胶.300℃热处理使得聚酰胺酸亚胺化成聚酰亚胺,氧化石墨烯得到部分还原.随着炭化温度的提高,石墨烯气凝胶中的石墨烯片层还原程度越高,聚酰亚胺炭化程度越高.与此同时,扫描电镜和光学显微镜结果表明,炭化处理和真空浸渍后,石墨烯气凝胶仍然可以保持良好的三维网络结构.在此基础上,石墨烯气凝胶作为导电填料,利用其三维网络结构,使得对应的复合材料具有良好的导电性能和电磁屏蔽性能.在石墨烯气凝胶含量仅为6.23%(质量分数)时,复合材料的电导率就可以达到252 S·m-1,电磁屏蔽效能高达75 dB.  相似文献   

17.
以氧化石墨烯为增强体,环氧树脂为基体,酚醛胺T-31为固化剂,制备了氧化石墨烯/环氧树脂复合材料。对该复合材料进行了FT-IR和热失重分析,测定了其邵氏硬度。结果表明,复合材料中产生了酯键,但该键的强度较弱,氧化石墨烯与环氧树脂间的结合强度不高;与纯环氧树脂相比,复合材料的热稳定性有所提高,随氧化石墨烯含量增加,T_(max)先增大后减小,并在0.5%处达最大值;与纯环氧树脂相比,复合材料的邵氏硬度有所提高,随氧化石墨烯含量增加,邵氏硬度先增大后减小,并在0.3%处达最大值。  相似文献   

18.
综述了近年来应用于电气电子行业的高导热环氧树脂介电复合材料研究进展,介绍了导热机理和导热模型,讨论了填料种类、粒径、形貌、颗粒复配及体系空隙、界面等影响因素对材料导热性能和介电性能的影响,并展望了高导热环氧树脂介电复合材料的发展方向。  相似文献   

19.
石墨烯/氰酸酯-环氧树脂复合材料的制备和性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为优化石墨烯/氰酸酯(CE)复合材料的制备工艺并提高其韧性,制备了对苯二胺(PPD)功能化的氧化石墨烯(GO-PPD),分别以GO和GO-PPD为添加物,以CE和环氧树脂(质量比为7:3)共混物为基体树脂制备了GO/CE-环氧树脂和GO-PPD/CE-环氧树脂复合材料。采用红外和拉曼光谱表征GO和GO-PPD的结构,并研究了二者在溶剂中的溶解性。GO-PPD在乙醇等低沸点和低毒性的有机溶剂中表现出稳定的溶解性,与GO相比,GO-PPD明显改善了复合材料制备的工艺性。性能研究表明,GO和GO-PPD的加入均会降低基体树脂的固化温度,明显提高其力学性能和热性能,使基体树脂的介电常数和介电损耗显著增大,但仍然基本保持良好的耐湿热性和耐腐蚀性。石墨烯表面的化学性质影响石墨烯/CE-环氧树脂复合材料的综合性能,与GO相比,GO-PPD的加入能更明显提高复合材料的力学性能和耐热性。  相似文献   

20.
氧化锌晶须/环氧树脂导热绝缘复合材料的制备与性能   总被引:4,自引:0,他引:4  
以环氧树脂(E-44)为聚合物基体,四针状氧化锌晶须(ZnOw)为填充材料,制备了氧化锌晶须/环氧树脂导热绝缘复合材料,研究了ZnOw含量对复合材料的导热性能、电性能的影响,并用扫描电子显微镜对断口形貌进行了观察。结果表明,较少量ZnOw的加入(体积分数<10%),复合材料的导热性能得到有效改善,但仍维持了聚合物材料所具有的电绝缘和低介电常数、低介电损耗的特点。其中当ZnOw体积分数为10%时,ZnOw/EP复合材料的热导率达到0.68W/(m·K),相比纯环氧树脂提高了3倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号