首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高键能异质原子的高效掺杂是稳定高电压LiNi0.5Co0.2Mn0.3O2(NCM)三元正极材料并提升其电化学性能的有效策略。借助含硼前体在二次颗粒表面富集及随后高温煅烧强化B3+体相扩散的策略,构建了硼离子高效掺杂NCM正极材料(NCM-B)。引入B—O键(键能:809 kJ·mol-1)抑制了电化学反应过程中晶格氧析出,进而稳定材料的氧离子框架;此外,表面残余的高锂离子导体Li2O-B2O3包覆层可以在一定程度上稳定电极-电解液界面。与改性前NCM相比,改性后的NCM-B正极材料在3.0~4.5 V电压区间的可逆比电容量可以达到193.7 mA·h·g-1,在10 C大功率下,比电容量仍保持120 mA·h·g-1(NCM仅为78.2 mA·h·g-1)。1 C下连续循环100圈后,比电容量保持率从73%提升到90%。表面富集和扩散强化的思想也有望实现其他正极材料的高效掺杂。  相似文献   

2.
杨威  张海朗 《应用化工》2013,(10):1792-1796
采用溶胶-凝胶法合成了层状正极材料LiNi0.4Co0.2Mn0.4O2,XRD、SEM、EDS和电化学性能测试表明,850℃为最佳煅烧温度,在此温度下合成的材料具有ɑ-NaFeO2层状结构,结晶度最好,Ni、Co、Mn分布均匀。充放电测试在2.0~4.6 V,0.2 C的电流下,材料首次放电比容量为185.6 mAh/g,库伦效率为93.2%;经40次循环后,容量保持率为92.5%,且该材料具有优良的倍率性能。  相似文献   

3.
以简单的球磨-干燥-煅烧法,制备了具有稳定α-NaFeO2型层状结构(R-3m空间群)的LiNi0.5Co0.2Mn0.3O2 型的三元正极材料。通过X射线衍射分析、傅里叶红外光谱、扫描电子显微镜、充放电循环、循环伏安、交流阻抗谱等手段测试了样品的理化性能。研究表明:球磨浆料的陈化温度对样品性能有明显的影响。在0.1C、1C、2C、3C、5C、6C、8C和10C倍率电流和连续充放电下,经过50 ℃陈化浆料制备的亚微米样品的放电容量分别为172.3、161.4、151.5、145.2、136.9、133.2、126.3、121.4 mA·h/g,表现出较好的大倍率电流放电性能。随着循环次数的增加,该样品的锂离子扩散系数和电荷传递阻抗均发生变化。该样品的未循环、充放电循环1次及循环40次样品的锂离子扩散速率分别为1.45×10-16、6.60×10-16、7.92×10-15 cm/s。  相似文献   

4.
采用微波共沉淀法合成了制备LiNi0.8Co0.2O2的前驱体球形α-Ni0.8Co0.2(OH)2,将其与LiOH·H2O混合,在氧气氛围下,用不同的烧结温度分别烧结10小时获得LiNi0.8Co0.2O2正极材料。用XRD、SEM对所制备的正极材料进行结构和形貌分析,用恒流充放电测试材料的电化学性能。结果表明,烧结温度对材料结构和电化学性能影响较大,所合成材料均具有α-NaFeO2的层状结构,烧结温度越高材料结晶越完善。900℃烧结的LiNi0.8Co0.2O2材料初级颗粒结晶最完善而且其二次团聚粒子的平均粒径最小,其表现出的电化学性能也最好,首次放电容量为189.1mA·h·g-1,首次循环放电效率达到92.5%。30循环后放电容量保持在148 mA·h·g-1,显示出较好的循环稳定性。  相似文献   

5.
《山东化工》2021,50(8)
三元正极材料在高能量密度和低成本方面表现出吸引人的性能。然而,这些材料容易在颗粒表面发生降解。所以,在这项工作中选用氧化钕作为涂层包覆在三元正极材料Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2表面,并进行了一系列表征测试。测试结果显示包覆前后材料具有相同的物相与相似的形貌。当Nd_2O_3的包覆量为x=0.03时,Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2的电化学性能得到提高,即使在5C倍率下,放电容量仍能达到113.2 mAh·g~(-1)。在0.2C下100次循环后容量保持率为88.2%。因此通过氧化钕的包覆可以提高材料的结构稳定性以及电化学动力学。  相似文献   

6.
针对无钴锰基富锂材料Li1.2Ni0.2Mn0.6O2固有的循环稳定性差、循环电压衰减严重等问题,研究了铝掺杂结合固相煅烧法对该材料在微观形貌及结构、电化学性能等方面的影响。研究结果显示,铝掺杂不仅能促使该材料的表层形貌更加致密,而且可以为该材料带来更稳定的晶体结构,这有利于该材料在长充放电循环中抵抗因结构降级带来的一系列不利因素,最终致使其电化学性能更加优异。此外,当铝掺杂量为1%(物质的量分数)时该材料在高倍率下的放电比容量、循环稳定性、电压保持率等均达到最优效果,在2.0~4.8 V电压区间内0.1C倍率下首圈放电比容量高达248.8 mA·h/g,200圈循环充放电后其放电比容量保持率由未掺杂时的57.9%提升至77.6%,循环电压保持率也由84.2%提升至85.6%。以上结果充分显示了1%铝掺杂对锰基富锂材料Li1.2Ni0.2Mn0.6O2具有优异的改良效果。  相似文献   

7.
采用共沉淀-高温固相合成法制备锂离子电池正极材料Li1.2Ni0.2Mn0.2-x/2Mn0.6-x/2CrxO2(x=0,0.04,0.08,0.12)。利用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试和电化学交流阻抗谱(EIS)对掺杂不同Cr含量的正极材料的结构、形貌和电化学性能进行分析测试。结果表明:制备出的Li1.2Ni0.2Mn0.2-x/2Mn0.6-x/2CrxO2正极材料均具备层状固溶体结构。Cr掺杂不会改变材料的结构,而且能够有效抑制循环过程中材料由层状向尖晶石结构转变的过程。当Cr的掺杂量为8%(即x=0.08)时,得到的正极材料Li1.2Ni0.16Mn0.56Cr0.08O2具有最好的电化学性能。0.1C的首次放电比容量由未掺杂的230.4 mA·h·g-1增加到246.6 mA·h·g-1,在0.2C电流下50次循环后的容量保持率由93.5%提高至95.36%,5C的放电比容量由91.5 mA·h·g-1增加到104.2 mA·h·g-1。而且x=0.08时制备的样品具有最小的电荷转移阻抗。  相似文献   

8.
利用共沉淀法制备了锂离子电池正极材料Li1.2Mn0.6Ni0.2O2和Li1.2Mn0.588Ni0.196Co0.016O2,并利用XRD、SEM和充放电测试对其晶体结构、形貌和电化学性能进行了表征.XRD结果表明:掺杂钴材料后,材料的层状结构保持完整,阳离子混排程度降低.电化学性能测试结果表明:掺钴材料的首次充放电效率和倍率放电性能明显优于Li1.2Mn0.6Ni0.2O2,且表现出较优的循环性能,其1、2、5C放电比容量分别为230.3、215.6、155.6 mA·h/g,1 C下循环50次的容量保持率为90.9%.  相似文献   

9.
采用固相合成工艺,对制备出的单晶Li Ni0. 6Co0. 2Mn0. 2O2(S-NCM622)和团聚型Li Ni0. 6Co0. 2Mn0. 2O2(P-NCM622)材料进行物化指标和电性能指标对比。通过激光粒度仪、X射线衍射(XRD)、扫描电镜(SEM)、差热分析DSC等测试分析表明,D50为4. 0μm的SNCM622材料粉末压实密度为3. 4g/cm3,D50为10μm S-NCM622材料粉末压实密度为3. 2 g/cm3。S-NCM622材料3. 0-4. 4 V下扣式电池0. 1C放电容量为190. 5mAh/g,比P-NCM622材料低0. 7mAh/g; 3. 0-4. 4V 45°C下1C充放80周,循环保持率为98%,比PNCM622材料高5%。将两者制作成600mAh的小软包电池,在3. 0-4. 3 V下,60°C放置30天后测试,S-NCM622材料鼓胀率为8. 7%,P-NCM622材料鼓胀率为12. 3%,前者容量恢复率为94. 9%,后者仅为89. 2%。4. 3V下扣电测试DSC,S-NCM622和PNCM622放热峰温度和放热起始点温度分别为284. 1°C、279. 6°C和286. 8°C、283. 5°C。  相似文献   

10.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2具有放电比容量大、热稳定性好、成本低、安全性能好等优点,但其倍率性能有待进一步提升。本文采用水热法制备了K+掺杂LiNi1/3Co1/3Mn1/3O2材料LNCM-xK。通过X射线衍射谱、场发射扫描电镜和X射线光电子能谱表征LNCM-xK的形貌和结构,通过电化学工作站和蓝电测试系统测试其电化学性能。结果表明:K+掺杂能有效降低阳离子混排程度,改善LiNi1/3Co1/3Mn1/3O2材料的电化学性能,其中当x=0.125时K+掺杂LiNi1/3Co1/3Mn1/3O2样品(LNCM-0.125K)阳离子混排程度最低;LNCM-0.125K样品电化学性能最佳,0.2 C下50次循环后容量保持率为96.15%;在不同电流密度(0.2 C,0.5 C,1 C,2 C,5 C)下进行倍率性能测试,连续充放电30次后LNCM-0.125K样品容量保持率为97.00%。  相似文献   

11.
采用溶胶凝胶法,用柠檬酸作为鳌合剂,在不同的温度下合成制备均一的层状锂离子正极材料Li(Co0.2Ni0.4Mn0.4)O2。XRD、SEM实验数据表明,在较低温度700°C下便可制得层状Li1+x(Co0.2Ni0.4Mn0.4)O2,并具有均一的颗粒形貌,颗粒大小为300 nm左右。XPS显示其正极材料中的Co、Ni、Mn的化学价态分别为+3,+2,+4,均为它们的稳定价态。700°C下合成的材料在20mA/g,2.9~4.6 V电压范围内,首次放电比容量为210.2 mAh/g,50周后放电比容量仍高达185.3 mAh/g,容量损失为11.84%。  相似文献   

12.
采用高温固相法合成锂离子电池富镍三元材料LiNi0.8Co0.1Mn0.1O2,对其工艺条件进行优化,对产物进行X射线衍射(XRD(,扫描电镜(SEM(以及电化学性能分析。结果表明:在氧气气氛下,锂与金属元素摩尔比为1.05:1、烧结时间15 h、烧结温度750℃为最佳合成工艺条件。按最佳工艺合成的样品在1C首次放电容量高达174.9 mA·h·g-1,50次循环后比容量为158.5 mA·h·g-1,容量保持率为90.62%,表现出良好的循环稳定性。XRD和SEM表征表明,在氧气气氛下烧结的样品有良好的层状结构,阳离子混排程度小,具有较好的类球形,粒径均匀分布在10~20 μm。循环伏安(CV(和电化学阻抗(EIS(结果表明,工艺条件的优化有助于提高正极材料的电化学性能。  相似文献   

13.
LiNi0.5Mn1.5O4(LNMO)是一种有前景的下一代高能密度锂离子电池正极材料,但其中的锰离子溶解严重、容量衰减严重,阻碍了其应用。本工作通过水热-煅烧合成了LiNi0.4Co0.1Mn1.5O4(LNCMO)三元尖晶石型高电压复合材料,探究了煅烧温度和升温速率等制备条件对样品形貌和结构的影响。本文合成的LNCMO样品微观形貌呈类菱形结构,物相纯净,比表面积为3.72m2/g,平均孔径为11.60nm,放电电压接近4.75V,在20mA/g下初始放电比容量达143.90mAh/g,和LNCMO的理论比容量(146.71mAh/g)的比值达98%。根据XRD和XPS等表征分析可知,复合材料中的Mn4+比例较大,Mn3+较少,且合适的煅烧温度和升温速率避免了Li x Ni1-x O杂质相的生成,因此本文制备的材料相比LNMO材料结构稳定性增强,电荷转移阻力低,电性能尤其是比容量大幅提升。本文还对比了循环前后的样品,发现其物相基本一致,但高电流密度下形貌结构坍塌严重,影响了循环稳定性。本研究提供了一种有效制备三元高电压材料的策略。  相似文献   

14.
层状结构材料LiNi1/3Co1/3Mn1/3O2具有高比容量、高循环性能、低成本和环保等优点,有望取代LiCoO2成为新一代锂离子电池正极材料。在介绍LiNi1/3Co1/3Mn1/3O2的结构特点和电化学反应特性的基础上,对其主要合成方法进行了详细评述,总结了该正极材料的阴阳离子掺杂、复合离子掺杂以及表面包覆改性等技术,指出国内外目前锂离子电池材料研究中存在的问题和未来的发展方向。  相似文献   

15.
采用传统固相法对锂离子电池富镍系LiNi0.8Co0.15Al0.05O2正极材料进行了Mg2+和F-共掺杂改性研究,借助X射线衍射(XRD)、XRD数据精修、扫描电子显微镜(SEM)、恒电流充放电测试、循环伏安曲线(CV)和电化学阻抗谱(EIS)等手段探究Mg2+和F-共掺杂对材料晶体结构、表面形貌和电化学性能的影响.物理测试表明,Mg2+和F-共掺杂后正极材料仍保持α-NaFeO2结构,无杂质生成,且共掺杂后正极材料晶胞参数增大,离子混排程度降低,这有利于Li+在晶格中的脱嵌迁移.此外,共掺杂后正极材料的微观形貌未发生明显变化.电化学性能表明,Mg2+和F-共掺杂样品表现出优异的电化学性能,1C倍率下循环200圈后,放电比容量仍保持有144.1mAh·g-1,容量保持率高达83.1%.优异的电化学性能归因于Mg2+和F-稳定了材料的晶体结构,减少了材料极化,抑制了电池电荷转移阻抗的增加.本工作的开展为其他锂离子电池正极材料性能提升提供了思路.  相似文献   

16.
《广东化工》2021,48(13)
采用环氧树脂来均匀分散Li~+,Co~(2+),Mn~(2+)和Ni~(2+),并通过环氧树脂低温固化来维持离子均匀分散,续以空气中充分煅烧制备LiNi1/3Co_(1/3)Mn_(1/3)O2材料。电化学研究显示,850℃下制得的材料具有更好的充放电性能,0.2℃倍率下的首次充放电容量分别达到186.4和135.1mAh·g~(-1)。  相似文献   

17.
以共沉淀法制备出的球形Ni0.5Co0.3Mn0.2(OH)2为前驱体,以碳酸锂为锂源,通过高温固相法合成了球形LiNi0.5Co0.3Mn0.2O2正极材料。通过热重分析(TGA/DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、粒度分布、以及电化学性能的测试考查了不同烧结温度对LiNi0.5Co0.3Mn0.2O2的物理性能及电化学性能的影响。结果表明,900℃下烧结得到的LiNi0.5Co0.3Mn0.2O2晶体结构完整、球形形貌规则、粒度分布均匀,并表现出了优异的电化学性能,0.2 C首次放电容量达到了166.7 mA.h/g;1 C首次放电容量为151.6 mA.h/g,20次循环后,容量保持率高达97.9%。  相似文献   

18.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

19.
张睿  吴元欣  何云蔚  艾常春 《化工学报》2015,66(8):3177-3182
采用氢氧化物共沉淀法制备了锂离子电池正极材料前驱体(Ni0.5Co0.2Mn0.3)(OH)2,并用流变相反应法合成了Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2锂离子电池正极材料。运用X射线粉末衍射和恒电流充放电对产物进行了结构和电化学性能的表征,结果表明Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2具有标准的层状α-NaFeO2结构,样品为1 μm左右的片状一次颗粒聚集而成的类球形二次颗粒。掺杂1%(质量分数)Li3PO4的Li(Ni0.5Co0.2Mn0.3)O2锂离子电池在0.1C的倍率下首次放电比容量达到188.6 mA·h·g-1(2.2~4.6 V vs Li+/Li),30次循环后容量保持率为 92.9%。循环伏安、交流阻抗测试表明Li3PO4的掺杂可减少充放电过程中电解液和电极之间的电荷传递电阻和锂离子扩散电阻,减小极化作用,从而提升了Li(Ni0.5Co0.2Mn0.3)O2材料的电化学性能。  相似文献   

20.
唐致远  余明远  薛建军  高飞 《化工进展》2007,26(3):396-399,404
采用溶胶凝胶法合成锂离子电池正极材料LiMn2O4、LiNi0.01Co0.01Mn1.98O4和LiNi0.01Co0.01Mn1.98O3.95F0.05。使用X射线衍射、扫描电子显微镜对合成材料的结构及物理性能进行了表征。将合成材料作为锂离子电池正极活性材料,用循环伏安、交流阻抗及充放电测试的电化学测试方法对材料进行了电化学的研究。结果表明,合成的LiNi0.01Co0.01Mn1.98O3.95F0.05材料的初始容量高于LiNi0.01Co0.01Mn1.98O4,而循环性能优于LiNi0.01Co0.01Mn1.98O4和LiMn2O4,显示了阴阳离子复合掺杂对于阳离子单一掺杂的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号