首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A 9‐week feeding trial was conducted to estimate the dietary isoleucine requirement of juvenile blunt snout bream. Six isonitrogenous and isoenergetic experimental diets were formulated to contain graded isoleucine levels ranging from 5.3 to 20.1 g kg?1 dry diet. At the end of the experiment, weight gain (WG), specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) increased with increasing dietary isoleucine level up to 11.1 g kg?1 dry diet, and dietary isoleucine level above 14.2 g kg?1 dry diet declined these performances. Dietary isoleucine levels (14.2 and 17.3 g kg?1 dry diet) significantly improved whole‐body protein content, but decreased whole‐body lipid, plasma triglyceride and cholesterol contents. Significantly lower visceral fat index (VFI) in fish fed with 14.2 g kg?1 dietary isoleucine was observed compared to those fed with deficient or excessive isoleucine. Dietary isoleucine supplementation significantly increased plasma isoleucine concentration, while plasma valine and leucine concentrations showed a reversed trend. Dietary isoleucine levels regulated the target of rapamycin (TOR) gene expression and improved plasma superoxide dismutase (SOD) activity in juvenile blunt snout bream. Based on second‐order polynomial regression model analysis of SGR and FER, the optimum dietary isoleucine requirement was estimated to be 13.8 g kg?1 dry diet (40.6 g kg?1 dietary protein) and 14.0 g kg?1 dry diet (41.2 g kg?1 dietary protein), respectively.  相似文献   

2.
Six diets were designed to investigate the effects of dietary docosahexaenoic acid (22:6n‐3; DHA) levels (0.5, 1.3, 2.3, 4.2, 8.1 and 15.9 g/kg diets) on growth performance, fatty acid profile and expression of some lipogenesis‐related genes of blunt snout bream (Megalobrama amblycephala). Fish (average weight: 26.40 ± 0.11 g) were randomly fed one of six diets for 8 weeks. Results indicated that the final body weight (FBW) and specific growth rate (SGR) of fish fed 1.3 g/kg DHA were significantly higher than other groups except for the 2.3 g/kg DHA (p < .05). Compared with other groups, the number of lipid droplet clusters of the liver stained with oil red O in the 2.3 g/kg DHA group was the highest, which was consistent with the lipid contents of whole body and liver. The DHA proportion in liver and muscle significantly increased with the increasing dietary DHA levels (p < .05), which reflected fatty acid profiles of diets. The highest mRNA expressions of acetyl‐CoA carboxylase α (ACCα), fatty acid synthase (FAS) and sterol regulatory element‐binding protein‐1 (SREBP‐1) occurred in the 1.3 g/kg DHA group, followed by 2.3 g/kg DHA. In summary, the supplementation of 1.3–2.3 g/kg DHA could improve growth performance and lipogenesis, and the dietary DHA could improve DHA and PUFA proportion in liver and muscle.  相似文献   

3.
Five isonitrogenous diets were formulated with graded alpha‐linolenic acid (LNA) levels (0, 5, 10, 15 and 20 g/kg) to investigate LNA requirement of juvenile Russian sturgeon Acipenser gueldenstaedtii. Weight gain and specific growth rate of fish fed LNA5 and LNA10 were significantly higher than those in other groups, while the feed conversion ratio of these two groups was lower than others. Dietary LNA increased n‐3 polyunsaturated fatty acid and n‐3/n‐6 ratio, but decreased saturated fatty acid contents in the liver. DHA in the fish tissue also increased with the increased dietary LNA. The superoxide dismutase activity was highest in fish fed LNA5. Fish fed LNA10 showed the highest catalase activity and the highest malondialdehyde content. A 459‐bp fragment of Δ6 fatty acid desaturase and a 474‐bp fragment of elongases of very long chain fatty acids 5 were cloned and analysed. The expressions of these two genes were higher in fish fed LNA15 and LNA20. The highest hepatic lipase activity occurred in fish fed LNA 20, and the malate dehydrogenase activity peaked in the LNA5 group. Based on SGR and FCR, the range of optimum dietary LNA concentration for juvenile Russian sturgeon is recommended at 6.85–10.69 g/kg.  相似文献   

4.
To determine the effects of linolenic acid (LNA, 18:3n‐3) in oriental river prawn (Macrobrachium nipponense), an 8‐week feeding experiment was conducted using six isonitrogenous and isoenergetic semi‐purified diets containing 0.07 g/kg (control), 7.3 g/kg, 16.6 g/kg, 20.2 g/kg, 27.3 g/kg and 36.3 g/kg LNA. The hepatopancreas lipid content decreased significantly when dietary LNA content was >20.2 g/kg. Fatty acid analysis revealed that the percentage of 18:3n‐3 in the hepatopancreas significantly increased with increasing dietary LNA levels, while 20:5n‐3, 22:5n‐3 and 22:6n‐3 levels in the hepatopancreas decreased in a curvilinear manner as dietary LNA increased. Additionally, qRT‐PCR results revealed that hepatopancreas mRNA expression of acetyl‐CoA carboxylase (ACC) decreased with increasing dietary LNA, while the greatest carnitine palmitoyl transferase‐1(CPT1) mRNA expression was observed in the 2.73 g/kg and 36.3 g/kg groups. Furthermore, hepatopancreas mRNA expression of acyl‐CoA delta‐9 desaturase (SCD) and fatty acyl elongase 6(elovl6) was downregulated when prawns fed the diets containing >20.2 g/kg LNA. These results indicate that dietary 18:3n‐3 could decrease lipid deposition through increased fatty acid β‐oxidation and modulated fatty acid synthesis, and alter fatty acid composition by regulating fatty acyl elongase and fatty acyl desaturase mRNA expression in the M. nipponense.  相似文献   

5.
To determine dietary lysine requirement of dusky kob, Argyrosomus japonicus, six isonitrogenous and isoenergetic diets (431 g/kg crude protein, 141 g/kg lipid and 20 kJ/kg) were formulated with graded levels of crystalline L‐lysine (18–42 g/kg of the dry diet). The protein source in the basal diet comprised fishmeal and soya, where a combination of L‐aspartic and L‐glutamic acids was maintained at a ratio of 1:1, and all diets were supplemented with a mixture of crystalline essential amino acids to simulate the amino acid profile in dusky kob. Dietary treatments were randomly assigned to triplicate groups of 12 fish (4.5 ± 0.2 g, mean weight; 66.5 ± 1.1 mm, total length ± SD), which were fed to apparent satiation three times daily for 12 weeks. The fish fed dietary L‐lysine at 21, 29 and 33 g/kg dry diet showed the highest specific growth rates (SGR) and the lowest feed conversion ratio. For most amino acids, retention in the body of the fish increased with an increase in dietary lysine from 18 to 21 g/kg, and it reached a maximum somewhere between 21 and 33 g/kg, where after amino acid retention decreased with increasing dietary lysine. Based on SGR and using segmented broken‐line analysis, the dietary L‐lysine requirement of juvenile dusky kob was estimated at 31.7 ± 1.6 g/kg dry diet corresponding to 73.5 g lysine per kg protein.  相似文献   

6.
甘草次酸对团头鲂生长、脂肪沉积与抗氧化功能的影响   总被引:3,自引:2,他引:1  
为探讨甘草次酸对团头鲂生长、脂肪沉积和抗氧化功能的影响,选取均体质量为(15.63±0.04)g的团头鲂幼鱼420尾,随机分在15个网箱中,分别以甘草次酸水平为0、0.15、0.30、0.45和0.60 g/kg的5种饲料投喂8周。结果发现,饲料添加甘草次酸对团头鲂增重率、特定生长率、饵料系数没有显著影响(P0.05)。甘草次酸可以显著降低实验鱼脏体比、肝体比、腹脂率及肝脏脂肪含量(P0.05),但对全鱼体组成和肌肉脂肪含量无显著影响(P0.05)。比对血浆脂肪代谢酶可见,0.30~0.60 g/kg甘草次酸添加组血浆总胆固醇含量较对照组显著下降(P0.05);而甘油三酯、游离脂肪酸和高密度脂蛋白胆固醇含量无显著变化(P0.05)。肝脏中脂蛋白酯酶、肝酯酶和总酯酶活性在添加甘草次酸后显著降低(P0.05);0.30~0.60 g/kg甘草次酸添加组脂肪酶活性显著高于其他各组(P0.05)。饲料添加甘草次酸可以显著提高肝脏超氧化物歧化酶活性和还原型谷胱甘肽含量,降低丙二醛含量(P0.05)。研究表明,饲料中添加0.30~0.45 g/kg甘草次酸时,显著降低了团头鲂内脏团的脂肪沉积,改善了鱼体脂肪分布,这可能是由于甘草次酸加强脂解作用,提高脂肪代谢酶活性导致的;饲料中添加甘草次酸也可显著提高团头鲂的抗氧化能力。  相似文献   

7.
An eight‐week feeding trial was conducted to determine the dietary histidine requirement of juvenile blunt snout bream. The results showed that final body weight, weight gain rate and specific growth rate significantly increased with increasing dietary histidine levels up to 9.9 g/kg (p < .05) and decreased gradually thereafter, while feed conversion ratio showed a converse trend. The survival rate, condition factor, viscerosomatic and hepatosomatic index were not significantly affected by the graded dietary histidine levels (p > .05). About 9.9 g/kg dietary histidine level significantly improved whole‐body protein and lowered moisture content. The contents of plasma total protein, cholesterol, urea and triglyceride levels were not significantly affected by dietary histidine levels. About 9.9 g/kg dietary histidine level significantly upregulated target of rapamycin and insulin‐like growth factor mRNA levels (p < .05), and 12.1 g/kg and 14.2 g/kg dietary histidine levels significantly upregulated eukaryotic translation initiation factor 4E‐binding protein 2 and ribosomal protein S6 kinase‐polypeptide 1 mRNA levels (p < .05). Based on second‐degree polynomial regression analysis of weight gain rate, and specific growth rate against dietary histidine levels, the dietary histidine requirement for juvenile blunt snout bream was estimated to be 11.2 g/kg of diet, corresponding to 36.1 g/kg of dietary protein.  相似文献   

8.
为探讨饲料淀粉水平对团头鲂成鱼生长、消化酶活性和肌肉成分的影响,选用初始均重为(161±2.7)g的团头鲂成鱼360尾,随机分成6组(每组3个重复),分别投喂含淀粉17.1%、21.8%、26.4%、32.0%、36.3%和41.9%的等氮等脂饲料9周。结果发现,团头鲂成鱼成活率和特定生长率不受饲料淀粉水平影响,但饲料添加适量淀粉能提高饲料和蛋白利用率,淀粉水平对肝脏和肠道中的总蛋白酶和纤维素酶活性不产生影响,却显著影响淀粉酶活性。肝体比、肝糖原和肌肉粗脂肪含量随饲料淀粉含量的增加而显著增加,血清血糖、胆固醇和甘油三酯含量不受饲料淀粉水平的显著影响,饲料中添加过量淀粉显著降低了血清补体3和补体4含量。以蛋白质效率和饲料效率为评价指标,经折线模型回归分析,得到团头鲂成鱼饲料中淀粉的适宜添加量分别为饲料干重的34.1%和31.4%,但考虑到血清补体的活性,团头鲂成鱼日粮淀粉水平不应超过36.3%。  相似文献   

9.
The dietary folic acid requirement of fingerling Catla catla (3.4 ± 0.17 g; 7.6 ± 0.41 cm) was evaluated by feeding casein–gelatin‐based isonitrogenous (350 g/kg crude protein) and isocaloric (16.72 kJ/g GE) diets containing different concentrations of folic acid (0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 mg/kg) to triplicate groups to apparent satiation at 08:00, 12:30 and 17:30 hr for 16 weeks. Absolute weight gain (AWG; 40.07 g/fish), specific growth rate (SGR; 2.25%), feed conversion ratio (FCR; 1.53), protein retention efficiency (PRE; 31.42%) and protein gain (PG; 6.74) improved significantly (p < .05) with increasing folic acid levels up to 0.4 mg/kg diet and then reached a plateau. However, maximum liver folic acid concentration increased up to 0.6 mg/kg diet. Dietary folic acid levels also significantly affected (p < .05) body composition of fish. No significant change (p > .05) in haematological parameters except in fish fed folic acid‐free diet was noted. Antioxidant and immune parameters increased with increasing concentration of dietary folic acid up to 0.4 mg/kg diet. Broken‐line regression analysis of AWG, FCR, PRE, PG, HCT and liver folic acid concentrations of fingerling C. catla against dietary folic acid levels indicated optimum growth, FCR, PRE, PG, HCT and liver folic acid saturation ranging between 0.22 and 0.56 mg/kg diet, respectively.  相似文献   

10.
团头鲂对饲料中Zn的需求量   总被引:1,自引:0,他引:1  
为了研究团头鲂对饲料中Zn的需要量,以平均体质量50 g的团头鲂为实验对象,采用半纯化饲料,以ZnSO4·H2O为锌源,设置Zn添加量分别为0、68、137、206、275 mg/kg(饲料中Zn总量为22.85、98.07、164.00、235.43、307.96 mg/kg)共5个Zn含量梯度,每个实验组设4个平行,在池塘网箱中养殖43 d。经过回归拟合分析,饲料中Zn添加量、饲料中Zn总量与团头鲂特定生长率、饲料系数、蛋白质沉积率、脂肪沉积率的关系,得到团头鲂对饲料中无机Zn补充量为155.86~161.25 mg/kg,对饲料总Zn需要量为184.85~190.39 mg/kg;在日均摄食量为5.12 g/100 g体质量下,团头鲂对饲料Zn日需求量为0.798~0.825 mg/100 g体质量,对饲料总Zn日需要量为0.946~0.974 mg/100 g体质量。饲料中Zn含量对团头鲂的成活率、肥满度、内脏指数、鳞片重/体质量、体质量/体长、脊椎骨重/体质量无显著影响(P0.05)。饲料中Zn含量对团头鲂的脊椎骨长/体长有显著影响(P0.05);饲料中Zn的补充,有利于团头鲂脊椎骨的生长。  相似文献   

11.
A 16‐week experiment was conducted to determine the dietary riboflavin requirement of the fingerling Channa punctatus (6.7 ± 0.85 cm; 4.75 ± 0.72 g) by a feeding casein–gelatin‐based (450 g/kg crude protein; 18.39 kJ/g gross energy) purified diet containing graded levels of riboflavin (0, 2, 4, 6, 8, 10 and 12 mg/kg diet) to triplicate groups of fish near to satiation at 09:30 and 16:30 hr. Absolute weight gain (AWG), protein efficiency ratio (PER), specific growth rate (SGR, % per day), protein retention efficiency (PRE%) and RNA/DNA ratio were positively affected by increasing concentrations of dietary riboflavin to 6 mg riboflavin per kg diet. Feed conversion ratio (FCR) decreased up to 6 mg riboflavin per kg diet but did not decrease further with higher riboflavin supplementation. Hepatic thiobarbituric acid‐reactive substance (TBARS) concentration also supported the pattern of FCR, whereas superoxide dismutase and catalase activities increased with increasing concentrations of dietary riboflavin from 0 to 6 mg/kg. Liver riboflavin concentrations increased with increasing levels of riboflavin up to 8 mg/kg diet. Broken‐line regression analysis of AWG, PRE and liver riboflavin concentrations of fingerling C. punctatus with dietary riboflavin level indicated optimum growth and liver riboflavin saturation at 5.7, 6.1 and 7.7 mg riboflavin per kg diet, respectively.  相似文献   

12.
The impact of stocking density on growth performance, physiological indicators, and body composition of juvenile blunt snout bream in recirculating aquaculture system was investigated in this study. Juvenile blunt snout bream were raised at stocking densities of 75, 150, 225, 300, and 450 fish/m3 for 12 wk with three replicate tanks at each density. All treatment tanks were supplied with water from the same recirculating system to ensure uniformity of water quality across groups. This study has shown that higher stocking densities had a negative effect on individual growth performance. Final body mass, specific growth rate (SGR), and weight gain decreased significantly as stocking density increased. Individual body mass as well as body length were more uniform in fish stocked at densities of 75 and 150 fish/m3 than in other groups. Stocking densities of 225 and 300 fish/m3 resulted in significant increases in serum total protein, triglyceride, lactate, and cholesterol levels, whereas blood glucose concentrations decreased significantly. In addition, decreased body lipid content and increased body moisture content were observed at stocking densities of 300 and 450 fish/m3. Overall, a density of 150 fish/m3 resulted in higher SGR and more uniform size among juvenile blunt snout bream.  相似文献   

13.
To investigate the effects of dietary tryptophan on growth and glycometabolism in juvenile blunt snout bream, 450 fish (initial weight 23.33 ± 0.03 g) were fed six practical diets with graded levels of tryptophan (from 0.79 g/kg to 5.96 g/kg dry matter) for 8 weeks. Results showed that final weight, per cent weight gain (PWG), protein efficiency rate, feed intake and feed conversion ratio (FCR) were significantly improved by 2.80 g/kg diet. The maximum values of protein and ash were observed in 2.80 g/kg diet, while moisture was minimum. Lipid content of fish fed 3.95 g/kg diet was significantly higher than other diets. The highest plasma insulin‐like growth factor‐1 (IGF‐1) content was observed in 0.79 g/kg diet. In the liver, IGF‐1 mRNA levels were significantly downregulated by 2.80 g/kg dietary tryptophan, while glucokinase levels were by 3.95 g/kg, while glucose‐6‐phosphatase and phosphoenolpyruvate carboxykinase mRNA levels showed a converse trend compared with IGF‐1. Based on PWG and FCR, the optimal dietary tryptophan level was determined to be 1.99 g/kg (6.20 g/kg of dietary protein) and 1.96 g/kg (6.11 g/kg of dietary protein), respectively, using broken‐line regression analysis.  相似文献   

14.
Two separate comparative feeding trials were conducted to evaluate if supplemental dietary guanidinoacetic acid (GDA), either singly or in combination with creatine, could enhance growth performance of red drum. The basal diet for both trials was formulated with practical ingredients but was not supplemented with creatine or GDA. For the experimental diets, creatine (0 or 20 g/kg) and GDA (0, 5 or 10 g/kg) were added to the basal diet in a 2 × 3 factorial arrangement for trial 1. Another 2 × 3 experimental design was adopted in trial 2 to further evaluate creatine (0 or 20 g/kg) and GDA (0, 10 or 20 g/kg) supplementation. Each diet was fed to juvenile red drum in either quadruplicate (trial 1) or triplicate (trial 2) aquaria twice daily for a total of 8 weeks. After each feeding trial, fish were sampled for body condition indices and whole‐body composition analysis, as well as determination of plasma, liver and muscle creatine concentrations. In trial 1, dietary creatine supplementation alone significantly (p < .05) improved weight gain and feed efficiency of red drum. An interaction between creatine and GDA was seen in whole‐body protein and lipid in the two trials. In trial 1, the highest levels of whole‐body protein and lipid were observed in fish fed 10 g GDA/kg, and in trial 2, supplementation of the diet with 10 g GDA/kg increased muscle protein and muscle lipid although there was a trending decline in fish fed the 20 g/kg GDA‐supplemented diet. In both trials of the present study, dietary GDA significantly (p < .05) enhanced liver creatine content. Dietary creatine also significantly (p < .05) enhanced plasma and muscle creatine content of red drum. Based on the results of this study, creatine was effective in enhancing weight gain and feed efficiency of red drum as seen in previous studies; however, GDA was not effective in influencing growth performance but limited synthesis of creatine from dietary GDA was apparent.  相似文献   

15.
An 8‐week feeding trial was conducted to quantify dietary copper (Cu) requirement of juvenile Siberian sturgeon, Acipenser baerii. Five isonitrogenous diets were formulated to provide actual dietary copper values of 1.8, 5.7, 10.1, 15.9 and 28.3 mg Cu per kg diet. Experimental diets were fed to the Siberian sturgeon (27.57 ± 0.24 g) in triplicate to apparent satiation for 8 weeks. At the end of experiment, weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) were significantly increased with increasing dietary Cu level up to 10.1 mg/kg and then decreased with further increases in dietary Cu level (p < .05). The Cu concentration in the liver and cartilage was positively correlated with the respective concentrations in the diet (p < .05), while muscle and serum Cu concentrations remained significantly unchanged (p > .05). Superoxide dismutase and glutathione peroxidase had the highest activities in serum of fish fed with 15.9 and 28.3 mg Cu per kg diet, respectively. Analysis by the broken‐line regression of SGR, crude protein content and superoxide activity demonstrated that the optimum dietary Cu requirements in juvenile Siberian sturgeon were 9.51, 9.58 and 16.10 mg/kg diet, respectively.  相似文献   

16.
A nutrition trial with meagre, Argyrosomus regius was assessed to determine the effect of dietary replacement of fish oil (FO) by soybean oil (SO) on the growth, feed utilization, body composition, fatty acid composition and basic haematological parameters. Six isonitrogenous (47% crude protein) and isoenergetic (gross energy 22 kJ/g) experimental diets were formulated by replacing 0 (FO), 20 (S20), 40 (S40), 60 (S60), 80 (S80) and 100 (S100) % of the FO with SO. Fish were fed three times daily to near satiation for 14 weeks. The specific growth rate (SGR) of fish fed S100 diet was significantly lower than the other treatments, except SO80 diet. The fish fed SO100 diet displayed significantly higher feed conversion ratio than that of other diets (P < 0.05). It was observed that fish fed the SO100 and SO80 diets displayed haemoglobin (HGB) levels significantly lower (P < 0.05) than fish fed the SO20 diet. Packed cell volume (PCV) of fish fed SO20 diet was significantly higher compared to SO100. The white blood cell (WBC) and red blood cell (RBC) remained unaffected by dietary treatment. The docosahexaenoic acid (22:6n‐3, DHA) and eicosapentaenoic acid (20:5n‐3, EPA) levels of meagre were significantly reduced by the substituting of dietary SO by FO at the end of the feeding period. The level of linoleic acid (18:2n‐6, LA) and linolenic acid (18:3n‐3, LNA) significantly raised in fish fed with SO diets (P < 0.05). The results of this study showed that SO could be replaced FO up to 80% in meagre diet without negative effect on growth performance and basic haematological parameters. Furthermore, the maximum level of FO replacement with SO determined by second order polynomial regression analysis, was 30.1% on the basis of maximum SGR.  相似文献   

17.
This study aimed to investigate the effects of graded butyrate glyceride (BG) supplementation levels in high soybean meal diet on juvenile black sea bream. Three hundred and sixty fish were fed diets containing 199 g/kg fishmeal and 450 g/kg soybean meal, with increasing levels of BG at 0, 2, 4, 6, 8 or 16 g/kg for eight weeks. The growth performance of the fish increased with increasing dietary BG supplementation up to 6 g BG/kg, beyond which growth rate reduced significantly (p < .05). Dietary BG supplementation increased the intestinal protease activity, but had no significant (p > .05) effect on lipase and amylase activities. Fish fed the basal diet exhibited villus shortening with a decrease in the number of goblet cells and a reduction in absorptive and digestive epithelial surface, while fish fed ≥4 g BG/kg diets showed a well‐integrated gut, with large absorptive and digestive epithelial surface. Dietary BG supplementation also improved antioxidative capacity by increasing superoxide dismutase and glutathione peroxidase activities while decreasing malondialdehyde content. The inclusion of BG in high soybean meal diets can improve growth performance, maintain healthy gut morphology and enhance antioxidative capacity of black sea bream.  相似文献   

18.
This study was conducted to determine the effect of dietary CLA (Conjugated linoleic acid) levels on growth performance, fatty acid profiles and lipid metabolism of liver in Synechogobius hasta. Fish were fed six diets with fish oil replaced by 0 (control), 5, 10, 15, 20 and 25 g kg?1 CLA for 8 weeks. Weight gain, WG, and SGR (specific growth rate) tended to increase when dietary CLA levels increased from 0 to 10 g kg?1 and then decline with further increasing dietary CLA levels to 25 g kg?1. FCR (feed conversion ratio) showed contrary trend with WG and SGR. The reduced VSI (vicero somatic index) and increased HSI (hepatosomatic index) were observed in fish fed increasing dietary CLA levels. Whole‐body lipid content declined, but hepatic lipid content increased with increasing dietary CLA levels. Dietary CLA modified total percentages of the main groups of fatty acids in liver. Hepatic 6PGD, ME and ICDH activities increased with increasing dietary CLA levels. FAS and G6PD were very variable and not related to dietary treatments. CPT I activities showed no significant differences among the treatments. Based on second‐order polynomial regression analysis of WG and FCR against dietary CLA level, 8.7–10.1 g kg?1 was indicated to be the optimal dietary CLA range for maximum growth and feed utilization for S. hasta.  相似文献   

19.
以酪蛋白和明胶为蛋白源,七水硫酸锌(Zn SO4·7H2O)为Zn源,分别配制成7种Zn含量(7.4 mg/kg、20.3 mg/kg、32.1 mg/kg、51.0 mg/kg、84.4 mg/kg、169.7 mg/kg、332.4 mg/kg)的半纯化饲料,投喂初始体重为(3.6±0.1)g团头鲂(Megalobrama amblycephala)12周,考察Zn对团头鲂幼鱼生长性能、血清生化指标和抗氧化功能的影响,确定团头鲂幼鱼对饲料Zn的需要量。结果表明,随着饲料Zn含量增加,团头鲂增重率、特定生长率和全鱼Zn含量呈先增加后稳定的趋势;全鱼水分含量显著降低(P0.05),粗蛋白含量显著增加。饲料Zn含量对团头鲂饲料系数无显著影响。饲料中添加Zn显著影响血清总蛋白、尿素氮、高密度脂蛋白胆固醇、总胆固醇以及甘油三酯含量,而对血清白蛋白含量和碱性磷酸酶活性无显著影响。随着饲料中Zn含量的增加,团头鲂肝丙二醛含量显著降低(P0.05),而肝过氧化氢酶和超氧化物歧化酶活性在各处理间均无显著差异。折线回归分析表明,团头鲂幼鱼(体重3.6~26.7 g)获得最佳生长时对饲料Zn需要量为32.6 mg/kg,获得最大鱼体Zn含量时Zn的需要量为47.6 mg/kg。本研究旨在确定团头鲂幼鱼对饲料中Zn的需要量,为配制团头鲂高效环保饲料提供科学依据。  相似文献   

20.
A 16‐week feeding trial was conducted to determine the dietary pantothenic acid requirement of fingerling Channa punctatus. Six casein–gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with graded levels of pantothenic acid (0, 10, 20, 30, 40 and 50 mg/kg diet) were fed to triplicate groups of fish (6.2 ± 0.71 cm; 4.26 ± 0.37 g) near to apparent satiation. The growth evaluation in terms of absolute weight gain (AWG), feed conversion ratio (FCR) and protein retention efficiency (PRE) indicated the best performance (p < .05) in fish fed diet containing 30 mg/kg pantothenic acid. Highest haemoglobin, haematocrit and RBCs counts were also obtained in fish fed diet with 30 mg/kg pantothenic acid. Mean cell haemoglobin and mean cell volume were found to be lowest in fish fed pantothenic acid‐free diet indicating the anaemia in this group of fish. Superoxidase dismutase and catalase activities of liver tissue were found to improve (p < .05) with the increasing levels of dietary pantothenic acid from 0 to 30 mg/kg. However, liver pantothenic acid concentration responded positively with the increasing levels of pantothenic acid up to 40 mg/kg diet and then stagnation in liver pantothenic acid concentration with the further inclusion of pantothenic acid was recorded. Second‐degree polynomial regression analysis of AWG, FCR and PRE exhibited the pantothenic acid requirement at 36.4, 32.8 and 34.7 mg/kg diet, respectively. Data generated during this study would be useful in formulating pantothenic acid‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号